AMANDA VIEIRA FERNANDES
RENAN RICARDO MARCHETTO

Moédulo de visao integrado ao kit da LEGO
MINDSTORMS EV3

Sao Paulo

2015

AMANDA VIEIRA FERNANDES
RENAN RICARDO MARCHETTO

Moébdulo de visao integrado ao kit da LEGO
MINDSTORMS EV3

Texto apresentado a Escola Politécnica da
Universidade de Sao Paulo como requisito
para a conclusao do curso de graduacao em
Engenharia Mecatronica, junto ao Departa-
mento de Engenharia Mecatronica e de Siste-
mas Mecanicos (PMR)

Orientador: Prof. Dr. Thiago de Castro Martins

Sao Paulo

2015

Este relatorio é apresentado como requisito parcial para obtencao do
grau de Engenharia Mecatronica na Escola Politécnica da Universidade
de Sao Paulo. E o produto do nosso préprio trabalho, exceto onde
indicado no texto. O relatério pode ser livremente copiado e distribuido

desde que a fonte seja citada.

FICHA CATALOGRAFICA

Vieira Fernandes, Amanda; Marchetto, Renan Ricardo.
Mdédulo de visdo integrado ao kit da LEGO MINDSTORMS EV3 / Vieira Fernandes,
Amanda; Marchetto, Renan Ricardo.. — S3o Paulo, 2015- 93 p.

Monografia — Escola Politécnica da Universidade de S3o Paulo. Departamento de
Engenharia Mecatrénica e de Sistemas Mecanicos (PMR), 2015.

1. LEGO MINDSTORMS EV3. 2. Intel Edison. 3. Visdo Computacional. I.
Prof. Dr. Thiago de Castro Martins. Il. Universidade de S3o Paulo. Ill. Escola
Politécnica. IV. Médulo de visdo integrado ao kit da LEGO MINDSTORMS EV3

AGRADECIMENTOS

Considerando essa monografia como o resultado de uma caminhada que nao comegou na
Escola Politécnica, agradecer pode nao ser uma tarefa nem facil, nem justa. Para nao
corrermos o risco da injustica, agradecemos de antemao a todos que, de alguma forma,

passaram pelas nossas vidas e contribuiram para a construcao de quem somos hoje.

Gostariamos de agradecer, em especial, algumas pessoas pela contribuigao direta

na construcgao deste trabalho:

Ao nosso orientador Prof. Dr. Thiago de Castro Martins, pelo estimulo académico,
pela orientacao constante, pelas contribuicoes tedricas e, principalmente, por nos mostrar

na pratica que podemos nos superar a cada dia.

Ao Prof. Nilson Noris Francischetti, pelo suporte eletronico oferecido nos momentos

de maior necessidade.

Ao Laboratério de Veiculos Nao Tripulados, pelo empréstimo do item mais valioso

desse projeto: o analisador logico.

Ao Peter Thesbjerg e Per Christoffersen, Diretor Sénior de Marketing e Engenheiro
Sénior de Pesquisa e Desenvolvimento Eletronicos do Grupo LEGO de Billund, pela
disponibilidade e atencao durante a nossa visita, pelo interesse académico no nosso

projeto e pela inspiracao da criagao de uma ferramenta tao interessante quanto o LEGO

MINDSTORMS.

Aos professores e amigos da Escola Politécnica da Universidade de Sao Paulo, pelo
incentivo e inspiracao que nos ofereceram durante este e tantos outros trabalhos ao longo

desses 6 anos.

Aos amigos que, mesmo nao estando presentes no nosso dia-a-dia, nos deram forca

e foco para continuar avancando.

Aos nossos irmaos e pais, pelo carinho e apoio durante os momentos mais dificeis e

pela comemoracao a cada pequena vitéria alcangada.

RESUMO

Em 1998 o Grupo LEGO, em parceria com o MIT, criou o primeiro kit de robética para
criancas: o RCX. Desde entao, com o desenvolvimento da tecnologia, o produto vem sendo
amplamente utilizado em cursos de graduacao, especialmente de mecatronica, computagao
e eletronica. Além do bloco programavel, o kit contém diversos tipos de sensores: toque,
luz, ultrassom, infravermelho, entre outros. Eles fazem do produto uma excelente ferra-
menta robdtica, permitindo a construcao de projetos bastante complexos. Entretanto, até
entao, o kit nao possui oficialmente um sensor de visao, o que permitiria aos usuarios a
criacao de robos ainda mais eficazes e complexos. O projeto tem como objetivo final o
desenvolvimento de um modulo de visao integrado ao kit da terceira geragao da LEGO
MINDSTORMS. Para tal finalidade, ambos hardware e software serao desenvolvidos de
modo que uma camera possa captar o ambiente através de fotos e/ou videos, estas imagens
sejam processadas por um microcomputador embarcado ao modulo que enviard ao bloco
inteligente EV3 da LEGO um conjunto de informagoes pds-processadas que serao, entao,
integradas a programacao de blocos propria ao produto. Envolto em um invélucro corres-
pondente aos padroes de encaixe da LEGO, o médulo seria uma ferramenta reprogramavel
de processamento de imagens em tempo real completamente integravel ao kit, permitindo
tanto uma utilizacao simplificada das funcoes pré-programadas na linguagem de blocos,
quanto uma programacao personalizada de diferentes fungoes segundo as necessidades do

usuario.

Palavras-chave: LEGO MINDSTORMS EV3. Intel Edison. Visao Computacional.

ABSTRACT

In 1998 the LEGO Group, in partnership with the MIT, created the first robotic kit for
children: the RCX. Ever since, with the development of this tecnology, the product has
been widely used in undergraduate courses, especially mechatronics, computer science and
electronics. In addition to the programmable brick, the kit contains a variety of sensors:
touch, light, ultrasound, infrared and others. They make the product an excellent robotics
tool, allowing the construction of very complex projects. However, the kit does not offitially
have a vision sensor which would allow users to create even more effective and complex
robots. The project’s ultimate goal is the development of a vision module integrated with
the LEGO MINDSTORMS third generation kit. For this purpose, both hardware and
software will be developed so that the camera can capture its environment through photos
and/or videos, these images being processed by a microcomputer embedded to the module
that will send to the EV3 a set of post-processed data that will be then integrated into
the LEGQO’s icon-based programming software. The module will be wrapped in a LEGO
matching casing and it would be then a reprogrammable tool for real-time image process-
ing completely integrated to the kit, allowing both simplified use of the pre-programmed

functions and custom programming different functions according to users needs.

Key-words: LEGO MINDSTORMS EV3. Intel Edison. Computational vision.

1.1
1.2
1.3

2.1
2.2
2.3

3.1
3.2
3.2.1
3.2.2

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4

5.1
5.2
5.3
5.3.1
5.3.2
5.4

SUMARIO

INTRODUGAO . .« v ot ettt e e e e e e e e e 13
Tema 13
Justificativa da Escolha do Tema 13
Estrutura do Trabalho 13
ESTADO DA ARTE i i ii et 15
LEGO MINDSTORMS 15
Visao Computacional na Robética 17

Visao Computacional e o kit da LEGO MINDSTORMS 18

REQUISITOS DO PROJETO 21
Requisitos funcionais 21
Requisitos nao funcionais 22
Requisitos do produto 22
Requisitos organizacionais 22
ANALISEE DESIGNo oot 23
Arquitetura 23
LEGO MINDSTORMS EV3 24
Modulo de Visao 25
Microcomputador 25
Camera 27
Cabeamento 27
Involucro 28
METODOLOGIA e e e e e e e e e e e e e 29
Bloco EV3 29
Protocolo de comunicagao 32
Programacao do microcomputador 37
Estrutura do Programa L. 38
Execugao no Boot (Edison) 44
Glue Logic 47
RESULTADOS e e e e e e e e e e e e e e e 50
CONCLUSAOttt et e e 54

Sugestoes para trabalhos futuros 54

REFERENCIAS . . . o o et e e s s s s s, 56

APENDICES 59

B.1

B.1.1
B.2

B.2.1
B.2.2
B.2.3
B.3

B.3.1
B.3.2
B.3.3
B.3.4
B.3.5
B.3.6
B4

B.4.1
B.4.2
B.5

B.5.1
B.5.2

D.0.3
D.04
D.0.5
D.0.6

APENDICE A - DESENHOS DE FABRICACAO ELETRONICA
DA PLACA DE CIRCUITO GLUE LOGIC 60

APENDICE B - ARQUIVOS DO BLOCO EVISION.EV3B . 63

JEVision/ 63
/EVision/blocks.xml 63
/EVision/VIs/ 66
/EVision/VIs/PBR/EVColor.vix 66
/EVision/VIs/PBR/EVShape.vix 67
/EVision/VIs/PBR/EVFace.vix 68
/EVision/strings/ oo Lo 68
/EVision/strings/en-US/blocks.xml 68
/EVision/strings/en-US /images/Identification_SetOfColors.xml 70
/EVision/strings/en-US /images/Identification_SetOfShapes.xml 71
/EVision/strings/pt/blocks.xml 71
/EVision/strings/pt/images/Identification_SetOfColors.xml 73
/EVision/strings/pt/images/Identification_SetOfShapes.xml 73
/EVision/images/ oo 74
/EVision/images/Identification_SetOfColors.xml 75
/EVision/images/Identification_SetOfShapes.xml 75
/EVision/help/ 75
/EVision/help/en-US/EVisionSensor.html 76
/EVision/help/pt/EVisionSensor.html 7

APENDICE C - DESENHOS DE FABRICACAO DO INVO-

LUCRO. 80
APENDICE D - PROGRAMAQAO (PYTHON) 82
protocol.py 82
colortracking.py 85
shapetracking.py Lo 87

facetracking.py 89

ANEXOS

ANEXO A - DESCRICAO DAS MENSAGENS ENVIADAS
E RECEBIDAS PELO LEGO MINDSTORMS
EV3 . .

91

LISTA DE ILUSTRACOES

Figura 1 — As trés geragoes dos blocos inteligentes do kit. 15

Figura 2 — Evolucao dos sensores da primeira, segunda e terceira geracoes, respec-

tivamente. L 16
Figura3d — NXTCam 20
Figura 4 — Arquitetura proposta do médulo de visao para LEGO MINDSTORMS

EV3 e 23
Figura 5 — Ambiente de programagao da LEGO MINDSTORMS EV3.. 25
Figura 6 — Esboco do invélucro. oo 28
Figura 7 — Arvore de diretérios de um bloco 29
Figura 8 — Representacao em blocos do médulo de visao. 30

Figura 9 — Representagao em blocos dos modos de identificagao de cores, formas e
faces, respectivamente. 31

Figura 10 — Configuragao do conector implementado nas portas de entrada do EV3 32

Figura 11 — Protocolo de comunicacao entre o EV3 e o sensor digital. 35
Figura 12 — Esquema de arquivos em Python. 38
Figura 13 — Esquema UML do programa. 38
Figura 14 — Troca de informagoes entre os processos. 46
Figura 15 — Resultado esperado com a adigao do circuito de Glue Logic. A7
Figura 16 — Circuito e Tabela da Verdade do flip-flop de NAND 48
Figura 17 — Valores 16gicos do flip-flop ao longo do tempo. 48
Figura 18 — Validacao da integracao do moédulo de visao. 52

Figura 19 — Exemplo de programacao integrada aos outros blocos da LEGO. 53

Tabela 1
Tabela 2
Tabela 3
Tabela 4
Tabela 5
Tabela 6
Tabela 7

LISTA DE TABELAS

Sequéncia de autoidentificacao nas conexoes de entrada 33
Lista de componentes da placa de circuito Glue Logic. 60
Descricao dos bits mais significativos do byte de mensagem. 92
Descricao das mensagens de sistema 92
Descricao das mensagens de comando 92
Descricao das mensagens de informacao 93

Descricao das mensagens de dados 93

LISTA DE ABREVIATURAS E SIGLAS

EPUSP

MIT

RCX

NXT

EV3

MCL

MSRS

HOG

AMDF

12C

UART

SPI

12S

PWM

OTG

UVvC

GPS

PCB

SI

Escola Politécnica da Universidade de Sao Paulo
Instituto de Tecnologia de Massachusetts
Robotic Command Explorer

Segunda geracao do LEGO MINDSTORMS
Terceira geracao do LEGO MINDSTORMS
Localizacao de Monte Carlo

Microsoft Robotics Studio

Histograma de Gradientes Orientados

Funcao da Média de Diferencas de Amplitudes
Inter-Integrated Circuit

Universal Asynchronous Receiver/Transmitter
Serial Peripheral Interface

Integrated Inter-IC Sound

Pulse-Width Modulation

On The Go

USB Video Class

Global Positioning System

Placa de Circuito Impresso

Sistema Internacional de Medidas

13

1 INTRODUCAO

1.1 Tema

O projeto visa o prospecto, o desenvolvimento e a construcao de um maédulo de visao
reprogramdvel integrado ao kit LEGO MINDSTORMS EV3!.

1.2 Justificativa da Escolha do Tema

Um dos pilares da atuacao profissional em mecatronica é a programacao. O processo de
aprendizado dos conceitos iniciais da programacao é complexo e marcado pela presenca
de intmeras dificuldades. Alguns dos pontos mais destacados sao: a baixa capacidade de
resolucao de problemas aliada a equivocos na formulacao de modelos mentais adequados; a
falta de motivacao para executar tarefas; a dificuldade para tratar abstracao, ferramentas

e linguagens nao adaptadas pedagogicamente; entre outros.

A LEGO apresenta um kit de desenvolvimento otimizado que segue os mais
recentes desenvolvimentos de software intuitivo de facil utilizacao para iniciantes. E neste
contexto que o produto comecgou a ser utilizado em salas de aula de cursos de graduagao,
especialmente nos dominios da computacao, eletronica, mecatronica e robotica. A Escola
Politécnica da Universidade de Sao Paulo (EPUSP) nao foi exce¢ao: em 2009, a escola
comecou a oferecer cursos extra-curriculares para os calouros interessados em aplicar os

conceitos de programacao aprendidos no curso regular utilizando o kit(PET. .., 2015).

Pessoalmente para os alunos envolvidos neste projeto, que participaram do curso
como calouros para, em seguida, se tornarem monitores do mesmo, a motivagao para o
desenvolvimento deste projeto provem da proximidade dos mesmos com o kit. Apesar
das ferramentas existentes no produto serem, por si s, muito potentes, a adicao de um

modulo de visao ao produto seria um avanco importante para as criacoes robéticas.

1.3 Estrutura do Trabalho

Este relatério serd estruturado da seguinte forma: primeiramente, sera apresentado o
estado da arte do dominio de visao computacional em robdtica e, mais especificamente,
das tecnologias integradas a todas as geragoes do kit da LEGO MINDSTORMS.

1 Os nomes LEGO®, MINDSTORMS®, NXT ¢ EV3 sdo marcas registradas do LEGO Group. Seu uso
neste texto nao implica em aval por parte do LEGO Group ao seu contetdo.

Capitulo 1. Introdugdo 14

Em seguida, os requisitos funcionais e nao funcionais do projeto serao detalha-
damente especificados. A posteriori, a arquitetura sera definida e os seus componentes

principais serao apresentados.

Finalmente, a metodologia utilizada serd descrita de forma a exemplificar os proces-
sos necessarios para a realizacao do projeto para, entao, os resultados serem apresentados

seguidos por uma conclusao sobre os mesmos com sugestoes para trabalhos futuros.

15

2 ESTADO DA ARTE

2.1 LEGO MINDSTORMS

O Grupo LEGO ¢é uma companhia privada, cuja matriz encontra-se em Billund, na
Dinamarca. Fundado em 1932 por Ole Kirk Kristiansen, o grupo é um dos lideres mundiais
em fabricagao de jogos infantis. O produto mais importante do grupo é o bloco LEGO,
e o principio de encaixe com tubos o torna unico, oferecendo infinitas possibilidades de
construgao (MORTENSEN, 2012).

H&4 35 anos, o grupo criou uma divisao especial voltada a educacao: a LEGO
Education. A companhia trabalha em conjunto com professores e especialistas em educacao
para proporcionar solucoes e recursos que serao utilizados dentro da sala de aula para
fazer o aprendizado mais divertido. A mesma inspira interesse em diversas areas, tais
quais Ciéncia, Tecnologia, Engenharia, Ciéncia da Computacao, Matemaética e Ciéncias
Humanas (EDUCATION, 2015).

Em 1988, a partir de uma colaboragao entre o Grupo LEGO e o Instituto de
Tecnologia de Massachusetts (MIT), desenvolveu-se um “bloco inteligente”, o qual seria
capaz de trazer as criacoes em blocos LEGO a vida via programacao computacional. O kit,
conhecido como LEGO MINDSTORMS , foi oficialmente introduzido no mercado em 1998
e consiste de um conjunto de pecas da linha tradicional acrescido de atuadores, sensores e
de um processador programével: o médulo RCX (Robotic Command Explorer). Até os
dias atuais, existem trés geragoes de kits: o RCX, o NXT e o EV3 (LEGO, 2013c).

Todos os médulos programéveis contém: portas de saida, identificadas por letras,
que servem para conectar os atuadores do robo; portas de entrada, identificadas por
nimeros, que servem para conectar os diversos sensores; tela LCD com informacoes
variadas como valores de leitura dos sensores e programas selecionados; e botoes do painel
utilizados para selecao do programa, ligar/desligar o bloco, executar a programagao, entre

outros.

Figura 1: As trés geragoes dos blocos inteligentes do kit. Reproduzido de (VALK 2013)

Capitulo 2. FEstado da Arte 16

v,
Luz Rotagio Temperatura Toque

B i B O

Ultra-som

N

Figura 2: Evolucao dos sensores da primeira, segunda e terceira geracoes, respectivamente?.

A cada geracao, o kit passou por diversas alteracoes. No que diz respeito ao bloco
programavel, enquanto o RCX poderia conter no maximo 5 programas e comunicar-se via
torre infravermelha (CAPRANI, 2006), o NXT permitia o armazenamento de diversos
arquivos em sua memoria além de comunicagao Bluetooth e USB (LEGO, 2006). Ja na
terceira geracao, o EV3 possui, além dos recursos da geracao anterior, comunicac¢ao wi-fi,

memoéria interna de 16MB e uma entrada para cartdes micro-SD (LEGO, 2013f).

De maneira anéloga, os sensores evoluiram muito com o passar do tempo: a primeira
geragao possuia sensores de luz, rotagao, temperatura e toque (CAPRANI, 2006); a segunda
toque, cor, som e ultrassom (seus motores ja sao equipados com sensores de rotacgao)
(LEGO, 2006); e a terceira possui sensores de cor, toque e infravermelho (LEGO, 2013f).
A dltima geracao do kit permite, também, a utilizacao de todos os sensores fabricados

para a geracao anterior a ele.

Atualmente, além dos sensores oficiais comercializados pela LEGO , existem di-
versas empresas cujo foco é o desenvolvimento de sensores adicionais para os kits da
LEGO MINDSTORMS NXT e EV3. Pode-se destacar, por exemplo, as empresas ameri-
canas HiTechnic (HITECHNIC, 2001-2012), Dexter Industries (INDUSTRIES, 2015) e
Mindsensors.com (MINDSENSORS.COM, 2005-2015), que fabricam sensores de pressao,
de aceleracao, de voltagem e de corrente, pneumaticos, magnéticos, entre outros, todos

compativeis com ambos blocos NXT e EV3.

Em estudos recentes, os kits da LEGO MINDSTORMS vém sendo usados com
éxito em cursos de graduacao em engenharia mecatronica, elétrica e computacao em vista
de sua plenitude operacional: além de possuir uma programacao simples e completa, o

mesmo possui quase todos os sensores fundamentais de robdtica. O conjunto fornece uma

2 Adaptado de (CAPRANTI, 2006), (LEGO, 2006) e (LEGO, 2013f).

Capitulo 2. FEstado da Arte 17

poderosa ferramenta para os alunos de graduacao na area, que podem facilmente prototipar

uma solucao robotica de qualidade para a materializacao dos seus projetos.

2.2 Visao Computacional na Robdética

Um dos pilares da robética baseia-se na localizagao de objetos no espaco e no referenci-
amento destes aos robos. Assim, o desenvolvimento de algoritmos de localizagao sao de
extrema importancia na drea. E o caso da Localizacio de Monte Carlo (MCL), algoritmo
probabilistico de localizacao global baseado nos conceitos de cadeia de Markov que repre-
senta as distribuicoes posteriores da posicao do robo através de uma colecao aleatéria de
particulas ponderadas que se aproximam da distribuicao desejada (AD; BURGARDC;
DELLAERTA, 2000). Existe ainda a dependéncia em relagao a visdo, que apresenta um
papel importante para a localizagao no espaco de um objeto. O processamento de imagem
fornece os parametros necessarios com os quais o robo pode se basear para tomar suas
decisdes, assim a identificagao e o rastreamento de objetos se tornam um objetivo para a
robotica. Um método simples, desenvolvido por DAS et al., utiliza-se da segmentacgao de
imagens com o objetivo de capturd-las e determinar a cor de um alvo base. Neste trabalho,
o alvo é escolhido e pré-determinado assim como sua cor, nao tendo, portanto, inteligéncia

ou liberdade para identificacao de objetos aleatérios.

A localizacao de objetos pode ser feita de maneira mais eficaz utilizando-se da
captura de imagem 3D (SULIGOJ et al., 2013). Inicia-se o sistema de visdo capturando
uma imagem 2D. A imagem é processada com o objetivo de encontrar os marcadores
(referéncias). As coordenadas em 2D dos pixels destes marcadores sdao usadas para extrair
uma imagem 3D, permitindo assim uma maior flexibilidade ao robo. Outros métodos
para navegagao foram desenvolvidos, como o descrito em (DAVISONA; KITAB, 2001),
que realiza o mapeamento sequencial (utilizado na localizacao e mapeamento rapido e

sucessivo) para aplicagoes em tempo real.

Paralelamente a estes estudos, desenvolveram-se também novas ferramentas que
facilitam a captura e interpretacao dos dados de uma camera. Assim nao é necessario
dominio no campo da visao computacional ou da robdtica para desenvolver um projeto.
E o caso do Eyepatch (MAYNES-AMINZADE; WINOGRAD, 2007), uma ferramenta
simplificada para extrair informagoes uteis de uma imagem voltada para programadores
iniciantes, ou também do Microsoft Robotics Studio (MSRS) (TRUNG; AFZULPURKAR,;
BODHALE, 2009) assim como dos toolkits AForge. NET, MATLAB e OpenCV. Um
exemplo de um robo inteligente seria 0o RHINO (BUHMANN et al., 1995), uma plataforma
robotica movel equipada com 24 sensores de distancia do tipo sonar, uma camera dual-color
e 2 computadores embarcados. Ele opera com autonomia e é capaz de aprender com o

ambiente, devido a um software inteligente e em tempo real, gerando caminhos com custo

Capitulo 2. FEstado da Arte 18

minimo.

As diversas pesquisas feitas no campo da robdtica envolvendo visao computacional
servem de base nesse projeto para futuras releituras, podendo ser entao aplicadas como

parte da solucao do desenvolvimento do médulo de visao proposto.

2.3 Visao Computacional e o kit da LEGO MINDSTORMS

Desde a primeira geracao do LEGO MINDSTORMS , a possibilidade de criar um moédulo
de visao que permitisse aos robos ver o ambiente no qual eles se situam ja era uma
preocupacao. De fato, ja na primeira geragao, a LEGO desenvolveu um sistema de visao
integravel ao kit da LEGO MINDSTORMS : o Mindstorms Vision Command (GASPARI,
2001).

O sistema é composto por uma camera Logiteck QuickCam embalada por um
bloco especial equipado com encaixes compativeis com os da LEGO . O médulo em si
nao necessita do RCX para funcionar: seu software de reconhecimento pode ser utilizado
para ativar o PC ligado a este e produzir sons, capturar fotos e até mesmo videos. A

comunicagao com o RCX é feita através da torre infravermelha.

O programa do Vision Command envia ao RCX um pequeno programa que contém
todas as instrucoes para cada evento. A partir dai, o sistema envia apenas o nimero
referente ao evento ocorrido. Desta forma, as entradas para sensores do RCX nao sao
usadas pelo Vision Command e o RCX nao pode ser programado independentemente do
Vision Command de maneira simples. Pesquisas comecaram a serem feitas de modo a

aperfeicoar esse médulo de visao ou desenvolver um novo conceito.

A integragao do kit com uma torre infravermelha, uma webcam e um computador
permitiu o processamento de imagens visando a solugao dos problemas de ruidos dos dados
(pré-processamento com filtros Gaussianos e detectores de arestas de Canny) antes da
aplicagao dos algoritmos de tratamento da imagem (representados por uma méquina de
estados) para controle da visao do rob6 (STEVENSON; SCHWARZMEIER, 2007), uma
solucao ainda primitiva que foi se renovando e se desenvolvendo com o crescimento da

popularidade dos kits e a evolucao dos mesmos.

J& na segunda geracao do kit, as pesquisas nesta area se intensificaram e diversas
solugoes para o problema foram desenvolvidas. Demirci et al. (2013) exploram o proces-
samento de imagens de uma camera por um computador e o envio, através do Mdédulo
de Comunicacao por Bluetooth, das informagcoes obtidas pelo PC para o NXT. Estas

informacoes serao utilizadas entao pelo robo na escolha do evento a ser realizado.

Neste, o processamento das imagens é feito em duas etapas: primeiro implementa-

se algoritmo do Histograma de Gradientes Orientados (HOG - Histogram of Oriented

Capitulo 2. FEstado da Arte 19

Gradients) para fazer a detecgao de formas; em seguida é aplicada a Fungao da Média
de Diferencas de Amplitudes (AMDF - Average Magnitude Difference Function) a fim
de classificar os resultados obtidos anteriormente. Estes médulos combinados fornecem
um método invariante de escala e orientacao. Sua implementacao ¢é feita no ambiente
MATLAB para entao ser integrado ao RWTH, ferramenta utilizada para a programagao e
o controle remoto dos dispositivos da LEGO NXT por Bluetooth.

TRUNG; AFZULPURKAR,; BODHALE propoem a utilizacao de uma webcam para
fazer o reconhecimento de sinais de transito para controlar um robo LEGO MINDSTORMS
. A solugao utiliza o MSRS, um ambiente de criacao de aplicacoes robdticas para Windows
que contribui na confiabilidade e no paralelismo dos componentes em um sistema distribuido.
Desta forma, coordenam-se trés sistemas diferentes: a webcam para o reconhecimento
das placas; o sensor de luz para a navegacao do tipo “seguidor de linha”; e o sensor de

ultrassom para a deteccao dos sinais de transito.

Em Zhenjun, Nisar e Malik (2014), a visao computacional é aplicada ao problema
de navegacao interior. O sistema proposto é composto nao mais por uma camera, mas por
um dispositivo Android conectado via wi-fi a um computador, o qual se conecta ao LEGO

MINDSTORMS NXT via Bluetooth.

Desta forma, o computador age como o centro de comando para receber as in-
formacoes do Android e do NXT para, em seguida, enviar-lhes instrugoes processadas a
partir dos dados recebidos. Os algoritmos implementados pelo PC sao a Localizacao pelo
Método de Monte Carlo e o Algoritmo A* do Menor Caminho. J4 o dispositivo Android
implementa o algoritmo ORB de deteccao de objetos no qual uma referéncia pré-definida
é disponivel no banco de dados do dispositivo. O NXT reage, portanto, passivamente aos

comandos recebidos do computador.

Kirillov (2008) desenvolveu uma camera pan-tilt (ou seja com dois graus de liberdade:
pitch e yaw) com uma webcam comum, um PC e pegas de LEGO . Utiliza-se o framework
AForge. NET (toolkit usado principalmente para o reconhecimento de imagens béasicas
(KIRILLOV, 2010)) para o processamento de imagens. Neste, foram também desenvolvidos
algoritmos de movimentacao manual e automatico dos angulos da camera para a tarefa de

rastreamento de objetos.

Todas as solugoes listadas até entao possuem uma caracteristica em comum: todas
se servem de um computador, o qual se encarrega de fazer o processamento das imagens.
Em geral, esta solugao tende a oferecer algumas limitagoes ligadas, por exemplo, ao sistema
de comunicagao entre a camera e o computador (no caso da utiliza¢do de cabos USB) e a

compatibilidade com os outros sensores.

E neste cenario que nasce a NXTCAM (MORAL, 2008, pag. 47): um sistema de
visao proéprio para os robos da LEGO MINDSTORMS NXT e EV3. Baseado na AVRCam

Capitulo 2. FEstado da Arte 20

(ORLANDO, 2004), o sistema tem a capacidade de processar imagens em tempo real e de
detectar e seguir até oito objetos coloridos. O médulo se conecta diretamente a porta de
sensores do bloco inteligente. Uma vez conectada, a NXTCam é completamente autonoma
e, portanto, nao necessita se conectar a um computador. As informacoes pos-processadas
que sao enviadas ao bloco da LEGO contém estatisticas do objeto: quantidade, cor,

coordenadas dos limites do objeto ou de segmentos (MORAL, 2008, pag. 59).

O sistema pode ser conectado a um PC através de um
cabo USB e, apos a instalacao do software de visualizacao e
de configuragao, é possivel visualizar a imagem no computa-
dor. Este software serve também para configurar os Mapas de
Cores para o processamento a bordo. Os objetos de interesse
sao reconhecidos através da comparagao dos valores de cor
armazenados com a imagem capturada, o que significa que
estes objetos precisam ser gravados na memoria do sistema. O

moédulo pode, portanto, guardar 8 Mapas de Cores e prover as

informagoes processadas referentes aos objetos correspondentes

a estes mapas.

Existem diversas aplicagoes jd desenvolvidas que utili- Figura 3: NXTCam?.
zam a NXTCam: desde as tarefas mais bdsicas como reconheci-
mento e seguimento de objetos até robos que jogam ping-pong,

connect four e de navegagao autonoma.

3 Reproduzido de (MINDSENSORS, 2014)

21

3 REQUISITOS DO PROJETO

Os requisitos do sistema a ser desenvolvido devem levar em consideracao tanto a estrutura
fisica (hardware) quanto a estrutura computacional (software) necessérias para que o bloco
programavel EV3 possa receber e interpretar as informacoes da camera pré-tratadas pelo

modulo de visao proposto.

3.1 Requisitos funcionais

O usuario, ao adquirir o médulo, deve ser capaz de:
e Conectar o produto diretamente as portas de entrada do EV3 utilizando o mesmo

cabeamento dos sensores oficiais da LEGO;

e Utilizar o software de programacgao em blocos da LEGO (ICON-BASED SOFT-

WARE) para importar o bloco de funcionalidades do médulo criado neste projeto;

Acessar informagoes fornecidas pelas diversas fungoes do bloco do médulo de visao
para programar uma criacao robdtica que reaja aos dados obtidos pela funcionalidade

escolhida;

e Reprogramar o médulo, criando fungoes diferenciadas daquelas criadas neste projeto.
Ja o modulo deve, de forma automatica, ser capaz de:

Autoidentificar-se quando conectado ao EV3;

Conectar-se a uma camera embarcada e recolher informacoes da mesma;

Fazer o tratamento das imagens obtidas pela camera em tempo real de forma a

sintetizar as informagcoes contidas na mesma;

Enviar ao EV3 as informagoes concernentes a funcionalidade selecionada pelo usuério;

Identificar a troca de funcao requisitada pelo usuario e reagir de maneira apropriada

a demanda.

As funcionalidades de base do médulo, ou seja, as fungoes desenvolvidas no ambito

deste projeto, sao listadas abaixo:

1. Cores: identificagao de objetos nas cores vermelha, azul e verde, posicionamento e

tamanho do maior objeto nas respectivas cores;

Capitulo 3. Requisitos do projeto 22

2. Formas bases: identificacao de objetos nas formas circulares, retangulares e triangu-

lares, posicionamento e tamanho do maior objeto nas respectivas formas;

3. Faces: reconhecimento de faces, posicionamento e tamanho da maior face encontrada;

3.2 Requisitos nao funcionais

3.2.1 Requisitos do produto

No que diz respeito aos aspectos nao funcionais do moédulo, o mesmo deve possuir as

seguintes caracteristicas:

e Por se tratar de um maédulo a ser embarcado no robo, ele deve ser o menor e o mais

leve possivel a fim de nao interferir na movimentacao do mesmo;

e Como os usudrios finais dos produtos da LEGO MINDSTORMS sao majoritariamente
criancas e adolescentes, a sua concepcao deve ser pensada de modo a ser resistente,

robusta e simplificada;

e Como o mesmo deve ser integrado as criagoes robéticas em pecas LEGO, o invélucro

do médulo deve seguir os padroes dos demais sensores.

3.2.2 Requisitos organizacionais
Os requisitos organizacionais do sistema consistem em:
e Entregar o protétipo no fim do ano letivo de 2015 para que este possa ser avaliado

por uma banca como Tabalho de Conclusao de Curso de Engenharia Mecatronica da
Escola Politécnica a USP (EPUSP);

e O numero de funcoes implementadas deve ser limitado devido ao periodo de dois

semestres do trabalho;

23

4 ANALISE E DESIGN

4.1 Arquitetura

Seguinte a descricao detalhada dos objetivos e requisitos do projeto, propoe-se a seguinte
arquitetura: uma camera se conecta a uma unidade de processamento, responsavel por
efetuar o tratamento de imagem em tempo real e o envio das informacoes recolhidas para o
EV3. Sabe-se de antemao que serao necessarios diversos componentes eletronicos adicionais

para efetuar a comunicacao entre os elementos do modulo.

Considerando que a unidade de processamento deve atender aos requisitos de
tamanho, peso, processamento de dados em tempo real e reprogramabilidade, conclui-se
que o mesmo deve ser tao potente quanto um computador, porém portatil. A tecnologia

recomendada para este caso de utilizacao sao os microcomputadores.

De maneira analoga, como a camera deve atender aos mesmos requisitos fisicos
e temporais, pode-se utilizar um mdodulo de camera embarcado, do tipo industrial, que
além de pequena é capaz de fornecer imagens numa resolugao razodvel a uma velocidade

compativel com sistemas em tempo real.
O esquema desta arquitetura é apresentado na figura 4.

Em resumo, os materiais necessarios para o desenvolvimento do projeto sao listados

abaixo:

e Um kit LEGO MINDSTORMS EV3;

e Um microcomputador;

Vi

[
LEGO®MINDSTORMS®E\“ ‘

Figura 4: Arquitetura proposta do médulo de visao para LEGO MINDSTORMS EV3.
Adaptado de (LEGO, 2013b), (CASEYTHEROBOT, 2014) e (ELECTRO-
NICS123,).

Microcomputador Camera

Capitulo 4. Andlise e Design 24

e Circuitos eletronicos para comunicagao com o EV3;

e Um moddulo de camera embarcado.

A seguir serao apresentados cada um dos componentes do médulo de visao proposto.

4.2 LEGO MINDSTORMS EV3

O bloco programavel EV3 contém (LEGO, 2013d):

e um processador ARM9 de 32 bits configurado com o sistema operacional Linux;
e 64MB de memoria RAM e 16MB de memoria FLASH;

e interface para cartao micro-SD;

e comunicacao Bluetooth; interfaces client e host para comunicacao USB;

e 4 portas de entrada com 6 fios de interface suportando tanto interfaces analégicas

quanto digitais;
e 4 portas de saida com 6 fios suportando entrada de encoders para motor;
e um display de 178x128 pixels em preto e branco;
e um auto-falante;
e 6 botoes de interface com o usudrio;
e fonte de alimentacao através de 6 pilhas AA ou uma bateria de litio recarregavel;

e conectores de 6 fios do tipo RJ-12 com ajuste do lado direito.

A programacao do bloco inteligente é feita através de um software especializado
fornecido pela LEGO. De forma intuitiva, cada elemento é caracterizado por um bloco que
pode ser arrastado e colocado no ambiente de programacao. As informagoes de saida de

cada um dos blocos podem ser recuperadas e utilizadas como entrada nos demais blocos.

Os blocos sao classificados em 5 categorias diferentes (LEGO, 2013e):

1. Acao: sao os blocos que permitem o controle por parte do EV3;
2. Controle de fluxo: sao os blocos de controle de tempo e loop de informagées;
3. Sensores: sao os blocos que fornecem informagoes ao EV3;

4. Operacgoes: sao os blocos de operacoes matematicas, como declaracao de variaveis,

somas e comparagoes;

Capitulo 4. Andlise e Design 25

Figura 5: Ambiente de programagao da LEGO MINDSTORMS EV3.

5. Avancado: sao os blocos que nao se encaixam em nenhuma das outras categorias,

como os responsaveis pela comunicagao Wi-Fi e Bluetooth, por exemplo.

O usuario é ainda capaz de criar blocos personalizados a partir dos blocos ja
existentes no programa. Estes sao chamados de “My Blocks”, e sao utilizados para guardar
segmentos de programas que sao repetidamente utilizados em muitos projetos. Um exemplo

de programacao no software esta apresentado na figura 5.

No ambito do projeto, a criacao de um novo sensor implica na criacao de um bloco
de programagao correspondente a este novo sensor, que serd classificado como um bloco

do tipo “Sensores”.

4.3 Modulo de Visao

4.3.1 Microcomputador

Atualmente, os microcomputadores mais conhecidos no mercado sao o Raspberry Pi e
o Intel Edison®. Oferecendo vantagens nos quesitos tamanho, peso e processamento, a

solucao da Intel se destaca como sendo a mais recomendada para o projeto.

Suas especificagoes sao listadas abaixo (INTEL, 2015):

e Conector de 70 pinos;

e 35.5 x 25.0 x 3.9 mm de dimensoes fisicas;

5 O nome Intel® ¢ marca registrada da Intel Corporation. Seu uso neste texto nao implica em aval por
parte da Intel Corporation ao seu conteudo.

Capitulo 4. Andlise e Design 26

e 40 GPIOs as quais podem ser configurados como interface para cartao SD, comu-

nicagdo UART, comunicacao 12C, comunicagao SPI, comunicacao 12S, controle de

PWM, portas USB com controlador OTG e saida de clock;

e Intel SoC de 22nm que inclui uma CPU Intel Atom”™ dual-core e dual-thread a 500
MHz e um processador Intel Quark”™ de 32 bits a 100 MHz;

e 1GB de memoria RAM e 4GB de meméria FLASH;
e Wi-Fi dual-band integrado;
e Bluetooth 4.0;

e Suporte para Yocto Linux, Arduino, Python, Node.js e Wolfram.

A utilizagao deste microcomputador requer a conexao de placas de expansao ao
mesmo. A Intel possui dois kits de expansao compativeis com o Intel Edison: o Kit Intel
Edison para Arduino e o Kit de Placa de Expansao Intel Edison. Ja a Sparkfun apresenta
diversos blocos de expansao para o Intel Edison (CASEYTHEROBOT, 2014). Cada um
deles oferece uma funcionalidade diferente: alimentacao, comunicagao via console, acesso
as entradas e saidas e funcoes especiais. Os blocos podem entao ser empilhados devido a

presenca dos conectores de 70 pinos fémea embaixo da placa.

Considerando que, com os blocos da Sparkfun, é possivel obter uma solucao
fisicamente pequena e personalizada as necessidades do projeto, optou-se pelos mesmos.
As funcionalidades necessérias ao projeto sao: alimentagao, comunicacao via console, OTG
(On The Go) e UART. A escolha da UART como protocolo de comunica¢ao com o EV3 se

encontra no capitulo 5.

Foram incorporados ao projeto, portanto, os Blocos Sparkfun para Intel Edison
Base e UART. O primeiro possui 2 conectores micro AB USB: o Console e 0 OTG. Ambos
permitem a energizacao do Edison. O Console utiliza o FT231x para fornecer uma interface
USB-Serial para acessar o console do Edison. Ja4 o OTG permite a conexao com webcams,

dispositivos de armazenamento ou outros dispositivos USB.

O bloco UART possui uma interface de console simples via um cabo FTDI (com 6
pinos, sendo que os pinos 2 e 3 correspondem aos sinais Tx e Rx, respectivamente). Além
disso, a placa possui uma chave para trocar entre a UART1 e a UART2, sendo a segunda

especialmente configurada para acessar o console do Edison.

Ambas as placas sdo montadas uma em cima da outra de maneira a minimizar o

espago utilizado e o Intel Edison se encaixa no bloco superior.

Capitulo 4. Andlise e Design 27

4.3.2 Camera

A escolha da camera é essencial para o sucesso do projeto. Equipada com um sensor
CMOS VGA para alta qualidade de imagem e baixo consumo de energia, o mddulo
de camera embarcado escolhido prové até 30 fps em qualidade VGA (640x480 pixels)
(ELECTRONICS123,).

A interface com o computador é feita através de um conector USB 2.0 de alta
velocidade. A mesma possui driver UVC (USB Video Class) para uso em maquinas com
sistemas operacionais Linux, Windows XP SP2 ou acima. As dimensoes fisicas da camera

sao 32 x 32 mm. Sua lente possui distancia focal de 3.6 mm e abertura de 1/2.0.

4.3.3 Cabeamento

Tao importante quanto os componentes em si sao as conexoes entre os mesmos. O esquema

de cabeamento entre os elementos acima apresentados serda como apresentado abaixo:

e Alimentagao: as placas de expansao da Sparkfun utilizadas no médulo oferecem
trés opgoes para a alimentacao do microcomputador, sendo elas através dos pinos
da placa UART, da porta micro USB OTG ou ainda da porta micro USB Console.
Como a primeira solucao interfere no bom funcionamento dos outros pinos da UART
e 0 VCC da porta micro USB OTG esta conectado a um diodo zener, o qual provoca
uma queda de tensao, a melhor opc¢ao € a alimentacao pela porta micro USB Console.
Sendo assim, é necessaria a conexao dos fios de energia do conector femea da LEGO

aos fios de energia da porta micro USB Console;

e Comunicagdo UART com o EV3: a comunicagdo UART utiliza uma linha tinica de
transmissao de dados (Tx) e outra de recebimento de dados (Rx). O cabeamento
necessario para a implementacao dessa comunicacao envolve a conexao dos pinos
Tx, Rx e GND do conector féemea da LEGO aos pinos Tx, Rx e GND da placa de
expansao UART do Edison;

e Comunicacao via Console: uma vez que a alimentacao do Edison é implementada
através da porta micro USB Console, a conexao direta do usudrio ao microcomputador
via console deve ser feita manualmente trocando-se o conector de alimentacao pelo

cabo desejado;

e Comunicacao USB com a camera: a conexao da camera ao Edison sera realizada de
maneira direta, onde o conector de 5 pinos da mesma se conecta a porta micro USB

OTG da placa de expansao do Edison.

Capitulo 4. Andlise e Design 28

4.3.4 Involucro

Todos os sensores da terceira geragao do LEGO MINDSTORMS possuem o mesmo design:
uma estrutura de plastico, leve e compacta, nas cores cinza escuro e branca, e com encaixe
compativel com as pecas da LEGO no fundo. Assim, o invélucro do médulo de visao a
ser desenvolvido planeja seguir as mesmas diretrizes desses sensores, uma vez que as suas

caracteristicas estao alinhadas aos requisitos nao funcionais do projeto.

Como a porta micro USB Console é utilizada para a alimentagao do microcompu-
tador, o usuario deve ser capaz de abrir e fechar o invélucro de maneira facil e pratica a
fim de se conectar ao mesmo. Desta forma, o involucro foi desenvolvido em trés partes
separadas que se encaixam facilmente através de abas que devem ser parafusadas umas

nas outras.

O esbogo do invélucro do moédulo de visao se encontra na figura 6, e o desenho de

conjunto do mesmo se encontra no apéndice C.

Figura 6: Esboco do invélucro.

29

5 METODOLOGIA

5.1 Bloco EV3

Como ja mencionado anteriormente, a LEGO dispoe de um software de programacao
em blocos préprio para o desenvolvimento dos projetos com o EV3. Além de programar,
o software disponibiliza ao usuario as informacoes fisicas do bloco inteligente, diversas

ferramentas de ajuda, atualizacao de software e de firmware, entre outros (LEGO, 2013e).

No ambito deste projeto, a ferramenta mais importante disponivel é a importagao
de blocos de programagao. Através dela, o usuario é capaz de importar diferentes blocos
criados por terceiros com as mais diversas finalidades. O arquivo a ser importado possui
extensao .ev3b, e nada mais é do que uma pasta compactada possuindo todos os arquivos

necessarios para a utilizacao do bloco.

O moédulo de visao a ser desenvolvido deve, portanto, estar associado a um novo
bloco de programagao, o qual devera conter as funcionalidades propostas anteriormente. Foi
neste cenario que a LEGO decidiu criar uma versao especial do software de programacao
direcionada ao desenvolvimento de novos sensores. O mesmo consiste em uma versao
simplificada do software, porém com diferentes funcionalidades as quais permitem a

analise, criagao e modificao do conteido do arquivo a ser importado.

A estrutura completa do arquivo .ev3b pode ser en-

contrada em (LEGO, 2013a). Este é composto por diver-

a BlockMame sos diretérios, como mostra o exemplo da figura 7. O di-
4 help retério principal recebe o nome do bloco e possui um arquivo
| e blocks.xml, um diretério VIs, um diretério strings, um di-
images retério images e um diretério help. O diretério VIs é aquele
a il strings que contém todo o cédigo do bloco, implementado em arqui-
vos .viz. Os cédigos que independem do hardware pertencem
it ao diretério VIs, enquanto aqueles que pertencem aos blo-
. Vis cos NXT e EV3 devem ficar agrupados nos subdiretérios de

MAT nomes NXT e PBR, respectivamente.

PER

J& o diretdrio strings possui subdiretoérios por pais,
: 1 . nomeados com o cédigo do idioma do mesmo (como “en-US”).
Figura 7: Arvore de di- & (Us”)

, . Cada um desses subdiretorios contém um arquivo blocks.zml
retéorios de um q

que prové os nomes a serem exibidos ao usuario, um texto
bloco.

descritivo e links de ajuda para os itens programaticos de-

finidos no arquivo blocks.zml principal no idioma do pais.

Capitulo 5. Metodologia 30

Figura 8: Representacao em blocos do mddulo de visao.

Todas as imagens usadas na palheta e as configuragoes dos parametros do bloco se
agrupam no diretério images. Todas estas imagens possuem nomes e tamanhos especificos

para serem reconhecidas pelo software.

Finalmente, o diretério help também possui subdiretérios por pais, nomeados com
o codigo do respectivo idioma, e contém um arquivo .html com informagoes de apoio a
utilizacao do bloco. Todas as imagens relacionadas a este arquivo devem ser colocadas

nesta mesma pasta.

Os arquivos blocks.xml acima mencionados sao usados para definir quase tudo sobre
o bloco, exceto o cédigo .viz que é compilado e usado no programa. Aquele que se encontra
no diretorio principal define, por exemplo, qual cédigo .viz usar em um determinado modo,
os parametros de um determinado modo, e qual modo usar como padrao ao colocar o bloco
no ambiente de programacao pela primeira vez. Ja aquele que se encontra no diretoério
strings mapeia alguns elementos programaticos no primeiro blocks.zml para exibir nomes

e fornecer textos de ajuda.

Os arquivos .viz, responsaveis pelo funcionamento do bloco, s podem ser criados
no ambiente de programagao para desenvolvimento de novos sensores. Os mesmos podem
ser programados através de uma combinacao de blocos mais simples (como fungoes
matematicas, logicas, de controle de fluxo e estruturas de dados) e de fung¢oes de mais
baixo nivel, chamadas “gray blobs” (LEGO, 2013a). Estas permitem, por exemplo, o acesso

aos dados recebidos pelo bloco inteligente através das portas de entrada.

No desenvolvimento do moédulo de visao, criou-se o bloco EVision.ev3b, que pode
ser diretamente importado no software de programacao em blocos da LEGO. Os arquivos

intrinsecos ao mesmo se encontram no apéndice B.

A figura 8 apresenta o bloco quando colocado no ambiente de programacao. Os

principais elementos, indicados na figura, representam:

1. Porta de entrada padrao do médulo de visao (4);

2. Botao para selecao dos modos a serem utilizados;

Capitulo 5. Metodologia 31

4

O EEE:EI JJ N Eﬁﬁ@ JJ s B = Em[ﬂ =)
ézrm @':rm v@l:l)

Figura 9: Representacao em blocos dos modos de identificagao de cores, formas e faces,
respectivamente.

3. Parametro de entrada do modo selecionado;

4. Parametros de saida do modo selecionado.

O EVision implementa, em alinhamento com os requisitos do projeto, trés modos:
identificacao de cores, de formas e de faces. Todos os modos implementados sao catego-
rizados como funcoes de medigao. Os blocos correspondentes a cada um dos modos sao

representados na figura 9.

O modo de identificacao de cores possui um parametro de entrada, o qual permite o
usudrio escolher a identificacao da cor vermelha (1), azul (2) ou verde (3), e dois parametros
de saida, que fornecem a posicao no eixo horizontal (Posicao X) e o tamanho (Area) do
maior objeto da cor selecionada. Os valores sao fornecidos como uma porcentagem do
tamanho da imagem capturada pela camera. Caso nenhum objeto da cor selecionada seja

detectado, os valores dos parametros de saida sao todos iguais a zero.

Analogamente, o modo de identificacao de formas possui um parametro de entrada
para a selegao das formas retangular(1), circular(2) e triangular(3), e dois parametros
de saida com a posicao horizontal (Posi¢do X) e o tamanho (Area) do maior objeto da
forma selecionada. Caso nenhum objeto da forma selecionada seja detectado, os valores

dos parametros de saida sao iguais a zero.

Ja o modo de identificacao de faces possui quatro parametros de saida: niimero
de faces detectadas (# de faces), posigao horizontal (Posi¢ao X), vertical (Posicao Y) e
tamanho (Area) da maior face detectada. Caso nenhuma face seja detectada, os valores

dos quatro parametros de saida sao iguais a zero.

Os nomes de exibicao e textos de ajuda existem apenas nas linguas portuguesa e

inglesa, ou seja, existem penas dois subdiretdérios nos diretorios strings e help: o “en-US”e

o) Ctpt” .

Capitulo 5. Metodologia 32

Pin 1. ADC@5 V ref. 9V With resistor limiter

Pin 2. GPIO, Auto 1D functionality

Pin 3. Ground

Pin 4. VvCC 5V

Pin 5. Digital VO, SCL (I12C), UART RX

Pin 6. Digital /O, SDA (I12C), ADC@5 V ref, UART TX

Figura 10: Configuragao do conector implementado nas portas de entrada do EV3. Re-
produzido de (LEGO, 2013d).

5.2 Protocolo de comunicagao

O desenvolvimento de um novo sensor para o LEGO MINDSTORMS EV3 demanda
um estudo aprofundado do bloco inteligente e, mais especificamente, das suas portas de
entrada. A sua principal funcionalidade é permitir o sistema reagir ao seu entorno através
do feedback dos sensores. Esta comunicacao é implementada através de uma interface de 6
fios (LEGO, 2013d). O esquema detalhado dos fios atras da porta 1 do EV3 se encontra
na figura 10.

Neste caso, o pino 1 suporta a leitura de valores analégicos ou sensores que requerem
um nivel de tensao mais elevado. O pino 2 é usado durante a fungao de autoidentificacao
do sensor. Os pinos 3 e 4 fornecem os niveis de tensdo 0 V (Ground) e 5 V (VCC),
respectivamente. Quando o sistema identifica automaticamente o tipo do sensor atrelado a

porta, o mesmo configura os pinos 5 e 6 para a funcionalidade apropriada.

O EV3 suporta a troca de informagoes de diferentes maneiras: valores analégicos,
comunicagao 12C ou UART. A comunicagao [12C suporta uma taxa de transmissao méaxima
de 9600 bits/s e um tamanho méximo de 32 bytes de buffers de comunicacao. Toda
comunicagao [12C é executada dentro de drivers de software, assim como todos os dispositivos

externos devem incluir resistores pull-up em ambos os pinos 5 e 6.

A comunicacao bi-direcional mais rapida que o EV3 suporta é a UART. Sendo
uma comunicagao assincrona, ela suporta taxas de transmissao entre 2400 bits/s e 460k
bits/s nas portas 1 e 2, enquanto as portas 3 e 4 suportam até 230k bits/s. A comunicacao
UART usa 1 bit de inicio, 8 bits de dados, nenhum bit de paridade e 1 bit de parada.

A partir de entao, para se estabelecer a conexao desejada entre o sensor e o
EV3, uma configuracao de conexoes especifica deve ser seguida. A plataforma suporta
a autodeteccao dos elementos externos através da identificacao dos niveis de tensao aos

quais os pinos de 1 a 6 estao conectados.

Capitulo 5. Metodologia 33

Tabela 1: Sequéncia de autoidentificacao nas conexoes de entrada. Reproduzido de (LEGO,
2013d).

Nivel no pino 2 ¢ LOW

Nivel no pino 5 é HIGH

Nivel no pino 6 é HIGH

Outras validagoes requerem comunicacao
Nivel no pino 2 é LOW

Nivel no pino 5 é LOW

Nivel no pino 2 é LOW

Valor no pino 1 é menor do que 100 mV
Nivel no pino 2 é LOW

Valor no pino 1 é maior do que 4800 mV
Nivel no pino 2 é LOW

Valor no pino 1 é entre 850 mV e 950 mV
Nivel no pino 2 é LOW

Nenhum dos cenarios acima sao ativos
Nivel no pino 2 é HIGH

Valor no pino 1 é menor do que 100 mV
Nivel no pino 2 é HIGH

Valor no pino 1 é entre 100 mV e 3100 mV
Nivel no pino 2 é HIGH

Sensor de Temperatura do NXT | Valor no pino 1 é maior do que 4800 mV
Nivel no pino 6 ¢ HIGH

Dispositivos 12C

Sensor de Luz do NXT

Sensor de Cor do NXT

Sensor de Toque do NXT

Sensor de Toque do NXT

Sensor de Toque do NXT

Sensor Digital do EV3

Sensor Simples do EV3

Inicialmente, todas as portas de entrada sao identificadas como “Porta Aberta”,

estado correspondente aos seguintes niveis de tensao:

e Valor no pino 1 é maior do que 4800 mV (valor AD)

e Nivel no pino 2 é HIGH (E/S digital)

Nivel no pino 5 é HIGH (E/S digital)

Nivel no pino 6 é LOW (E/S digital)

Valor no pino 6 é menor do que 150 mV (valor AD)

A sequéncia de detecgao utilizada, assim como os elementos identificaveis pelo atual

firmware, sao apresentados na tabela 1.

A arquitetura de comunicagao implementada para os sensores digitais da LEGO
MINDSTORMS EV3 (i.e.para os sensores que se comunicam via UART) requer que o
dispositivo siga um protocolo especifico. Este protocolo foi desvendado em (KOHLER,

2015). Existem 4 tipos de mensagem:

Capitulo 5. Metodologia 34

1. Mensagens de sistema
2. Mensagens de comando
3. Mensagens de informagao

4. Mensagens de dados
Cada mensagem segue uma das seguintes estruturas:

e Byte de mensagem (mensagens do tipo 1)
e Byte de mensagem, byte de checksum® (mensagens dos tipos 2 e 4)

e Byte de mensagem, byte de informacao, mensagem de payload” e byte de checksum

(mensagens do tipo 3)

O byte de mensagem tem uma estrutura especial, ObXXLLLYYY, onde: XX indica
o tipo de mensagem; LLL indica o tamanho da mensagem de payload (de fato, o tamanho
do payload é exatamente 2211 bytes.); para mensagens do tipo 1 e 2, YYY indica o
subtipo da mensagem , enquanto que para mensagens do tipo 3 e 4, ObYYY ¢ um nimero

de modo do sensor.

As tabelas que decodificam todos os tipos de mensagens acima citados se encontram

no anexo A.

O protocolo de comunicagao com o EV3 funciona da seguinte maneira: inicialmente,
o pino de transmissao Tx da UART (i.e. pino 6) deve ficar em LOW por, no minimo, 500
ms. Esta condigao indica ao EV3 uma condigao de quebra, ou seja, a conexao de um novo
sensor. A partir de entdao, ambos EV3 e sensor comegam a mandar mensagens: o EV3
é capaz de enviar ao sensor as mensagens de sistema ACK e NACK e as mensagens de
comando SELECAQO e ESCRITA: enquanto o sensor pode enviar ao EV3 as mensagens
de sistema ACK e SYNC, as mensagens de comando TIPO, MODOS e VELOCIDADE,

todas as mensagens de informacao e de dados.

O diagrama de sequéncia da figura 11 apresenta uma visao geral do protocolo de

comunicacgao entre o EV3 e um sensor digital.

Nele, o sensor retransmite o protocolo até que o mesmo receba uma mensagem de
ACK do EV3 dentro de 80 ms ap6s o final do envio do mesmo. A partir desta confirmacao,

o EV3 passa a enviar, a cada 300 ms, mensagens de NACK para o sensor. Se nenhuma

6 Também conhecido por soma de verificacdo, é um cédigo usado para verificar a integridade dos dados

transmitidos.

7 E a parte essencial da mensagem transmitida, ou seja, ndo inclui o “cabecalho”da mensagem.

Capitulo 5. Metodologia 35

Protocolo

EV3 Sensor

Taxa de transmissao = 2400 bltn’sj

loop [até NACK do EV3]
I
I

TIFO

]
l
1
! MODOS
]
l VELICODADE

il

A

PCT

Sl

FORMATO

ACK

&

ACK

i
I
i
i
i
|
i
i
I
I
i
I
i
!
i

SIMBOLO |
i
i
I
i
I
I
i
|
i
I
i
i
i

Taxa de transmissao = 1'.,"EL{C:ICID.‘-"lDET

|
NACK |

L

. DADOS MODO O

|
|
|
. | |
I
|
I
|

|

|

|

|

|

|

] I
| SELEGAO MODO 2
|

|

|

;

|

[}

L)

DADOS MODO 2

A

MNACK

|
|
I
|
-
Lo

EV3 Sensor

www.websequencediagrams.com

Figura 11: Protocolo de comunicagao entre o EV3 e o sensor digital. Adaptado de (LEGO,
2013d).

Capitulo 5. Metodologia 36

mensagem de dados for recebida pelo EV3 dentro de 5 NACKS, a comunicagao se encerra

e o sensor deve ser reinicializado.

No presente projeto, a comunicacao serial entre o moédulo de visao e o EV3
escolhida foi a UART, devido a sua elevada taxa de transmissao de dados e simplicidade de
implementacao. Sendo assim, o médulo devera se autoidentificar como sendo um Sensor
Digital do EV3, o que significa que o nivel de tensao no pino 1 devera ser menor do
que 100 mV enquanto o pino 2 devera permanecer em HIGH. Os pinos 5 e 6 serao,
em seguida, configurados pelo EV3 com as funcionalidades UART RX e UART TX,

respectivamente.

Uma vez implementado o bloco de programacao do EV3, é possivel definir as
mensagens do protocolo de comunicagao. A primeira mensagem é a mensagem de comando
de TIPO, a qual define o identificador médulo de visao como sendo igual a 66. Em
seguida, tem-se a mensagem de comando de MODOS. Ela define dois parametros: o
nimero de modos suportados e o nimero de modos a serem mostrados. No caso do projeto
do sensor desenvolvido, esses nimeros sao iguais entre eles e iguais ao nimero de fungoes
do modulo, ou seja, iguais a 3. Na pratica, envia-se o nimero de modos menos 1, ou seja,
a informacao a ser efetivamente enviada é igual a 2. A ultima mensagem de comando é a
VELOCIDADE. Nela define-se a velocidade méxima de transmissao de dados suportada
pelo sensor, ou seja, a nova baudrate da comunicagao serial entre o EV3 e o mesmo. A

velocidade maxima do moédulo de visao foi definida como sendo igual a 57600.

As préximas mensagens a serem enviadas sao as mensagens de informagcao de cada
um dos 3 modos. Deve-se enviar os modos de trés para frente, ou seja, o ultimo modo deve
ser o primeiro a ser enviado enquanto o primeiro modo deve ser o ultimo. Tanto a ordem
quanto as informagoes de todos os modos foram estabelecidas no arquivo blocks.xml do

diretério principal (vide apéndice B).

O terceiro modo, primeiro a ser enviado, é o de identificagdo de faces. A primeira
mensagem de informagao a ser enviada é a de NOME, ou seja, EV-FACE. Seguinte,
deve-se enviar a mensagem de VALBRUTO, que define o intervalo de valores brutos
dentro do qual as informacoes enviadas pelo sensor devem pertencer. Definiu-se, entao, o
intervalo entre 0 e 100 uma vez que todos os valores (exceto o nimero de faces detectadas)

sao dados em porcentagem da resolucao da camera.

Como o intervalo de valores em porcentagem seria igual ao intervalo padrao (0-100),
nao é necessario enviar a mensagem de PCT. A proxima mensagem a ser enviada é a
mensagem de SI, que define o intervalo de valores no SI correspondente aos valores brutos.
Este intervalo foi definido como sendo idéntico ao intervalo de valores brutos (0-100). A
mensagem de SIMBOLO fornece o nome da unidade no SI. Como a maior parte das

informacoes ¢é enviada pelo médulo de visao em porcentagem, o simbolo definido foi pct.

Capitulo 5. Metodologia 37

Por fim, uma das mensagens mais importantes para o médulo de visao é a mensagem
de FORMATO, a qual define o nimero e o tipo de dados enviados pelo sensor, além do
numero de digitos e de decimais a mostrar. Para o modo de identificagao de faces, sao

necessarios 4 itens do tipo inteiro de 8 bits com até 3 digitos e 0 decimais a mostrar.

O segundo modo ¢ o de identificacao de formas. Seu NOME é EV-SHP e os dados
enviados pelo sensor em VALBRUTO estao dentro do intervalo de 0 a 100, ja que todos
os valores sao dados em porcentagem da resolugao da camera. O intervalo de valores no
SI também € igual a 0-100 e o SIMBOLO é, portanto, igual a pct. Seu FORMATO ¢

definido como 8 itens do tipo inteiro de 8 bits com até 3 digitos e 0 decimais a mostrar.

Analogamente, o primeiro modo, e ultimo a ser enviado, é o de identificacao de cores.
Seu NOME ¢ EV-COL, os intervalos dos dados em VALBRUTO e no SI sao iguais
a 0-100 (todos os valores sendo portanto também dados em porcentagem da resolugao
da camera), o SIMBOLO ¢ pct e o FORMATO contém 8 itens do tipo inteiro de 8

bits com até 3 digitos e 0 decimais a mostrar.

No final, uma mensagem de ACK ¢é enviada. Espera-se que, durante os 80 ms que
seguem o final do envio do protocolo, o EV3 responda com uma mensagem de ACK. Se
esta resposta nao for recebida, o protocolo completo deve ser re-enviado. Senao, o sensor
pode comecar a enviar as mensagens de DADOS referentes ao médo selecionado. Sendo
o primeiro modo definido como padrao, o sensor deve comecar qualquer comunica¢ao
enviando as informagoes referentes a este modo. Em seguida, o EV3 envia uma mensagem
de SELEQAO indicando o modo que o sensor deve comecar a enviar as informacoes a

partir de entao.

5.3 Programacao do microcomputador

A biblioteca de tratamento de imagens mais recomendada para aplicagoes em tempo real é
a OpenCV (Open Source Computer Vision). Ela possui interface para C++, C, Python
e Java e suporta Windows, Linux, Mac OS, iOS e Android (OPENCV, 2015). Para manter
a facilidade do projeto e do software aberto, foi escolhida a liguagem de programacao
mais “amigavel”dentre as listadas acima: o Python, cujas caracteristicas estao ligadas
a produtividade, legibilidade, qualidade, facilidade, portabilidade, interoperabilidade e
customizacao. Em outras palavras, Python é uma linguagem que foi criada para programar
de maneira rapida, suportando diversos paradigmas de programagao. Sua caracteristica
mais marcante, comumente chamada de baterias inclusas, significa que quase tudo o que é

necessario para lancar um programa em Python estd presente na instalagao basica.

Capitulo 5. Metodologia

38

A —

protocol.py

Figura 12: Esquema de arquivos em Python.

5.3.1 Estrutura do Programa

—a

color_tracker.py

P

shape_tracker.py

_ @

face_tracker.py

O programa é basicamente dividido em duas partes: o envio protocolar, responsavel pela

comunicagao com o bloco inteligente e identificacao do sensor; e o envio das mensagens de

execucao, que definem a funcao a ser utilizada pelo sensor e a trasmissao de informacoes

do sensor ao bloco. Um esquema simplificado dos arquivos pode ser analisado na figura 12.

O programa protocol.py é o responsavel pelo gerenciamento da transmissao

protocolar e de dados entre o sensor e 0 EV3. As funcionalidades do sensor sdo controladas

pelos programas secundarios colortracker.py, shapetracker.py e facetracker.py. Os

protocol

color tracker

|dentificar Cores

==ColorTrack

shape tracker

Package | Comunicacao
EVision
== sendProtocol
== yartiData
== Calculo

uarData e Calculo
funcionam em
processos paralelos
(multiprocessing)

Figura 13: Esquema UML do programa.

Identificar Formas

==ShapeTracker

face tracker

|dentificar Rostos

==ColarTracker

Capitulo 5. Metodologia 39

arquivos relacionados aos programas se encontram no apéndice D. As classes e fung¢oes sao

descritas na figura 13.

sendProtocol é a funcao que estabelece todos os parametros de comunicacao
entre o sensor e o bloco inteligente. Esses parametros estao descritos dentro do protocolo
inicial. Para essa comunicacao foram utilizadas as bibliotecas pyserial, que encapsula o
acesso para a porta serial, e a mraa, utilizadas em plataformas embarcadas, como o Edison

ou Galileo. As agoes realizadas pela funcao sendProtocol sao:

Configuragao das portas da UART;

Aplicacao do nivel logico LOW durante 500 ms;

Envio do protocolo de comunicacgao;

Alteracao da baudrate para o inicio da transmissao de dados.

#Transforma o pino 35 da UART (TX) em uma porta GPIO
x=mraa.Gpio(35)
#Define como pino de saida

x.dir(mraa.DIR_QOUT)

#Forcar o TX > 500 ms com nivel logico baixo
x.mode(2)

time.sleep(0.505)

x.mode (0)

#Inicializacao dos pinos da UART

x = mraa.Uart(0)

#Definicao inicial da BAUD RATE (2400), padrao para o kit EV3
u = serial.Serial(’/dev/ttyMFD1’,2400, timeout = 1.4)

#Limpa RX e o TX
u.flushInput ()
u.flushOutput ()

#Inicio da mensagem protocolar
msg = bytearray.fromhex(’Protocolo a ser enviado’)

u.write(msg)

#Apos envio da mensagem, espera resposta afirmativa do bloco EV3 (ACK)

info=u.read()

Capitulo 5. Metodologia 40

#Testa o recebimento da mensagem

if info:
#Se mensagem for um ACK saimos da funcao de envio do protocolo
if (info.encode("hex")=="04’):

break

#Redefine baudrate para uma de transmissao da dados (mais rapida)

u.baudrate=57600

As fungoes uartData e Calculo devem executadas em paralelo para permitir
a simultaneidade de leitura e de envio de dados ao bloco inteligente. A arquitetura
implementada deve permirir também a troca de informagoes entre as fungoes, como por
exemplo a mudanca de modo de operagao. Para tanto, a biblioteca multiprocessing, que
suporta processos através da utilizacao de uma API semelhante a biblioteca de threading,
foi a solugao escolhida. Mais especificamente, sao utilizadas as fungoes Process, para gerar

¢

dois processos que trabalhariam simultaneamente e Queue, para criar uma “ponte”entre

esses processos e permitindo, assim, a troca de informacao entre eles.

from multiprocessing import Process, Queue

def uartData (q,t,v):
#Conteudo

def calculo (q,t):
#Conteudo

#Criamos um ponto de troca de informacoes entre os processos

q
t

Queue ()

Queue ()

#Criacao dos processos

p = Process(target=uartData, args=(q,t,u,))
k = Process(target=calculo, args=(q,t,))
p.join()

k.join()

uartData é a funcao responsavel por “escutar”as mensagens enviadas pelo bloco
inteligente pelo pino Rx e enviar as mensagens do sensor ao EV3 pelo pino Tx. Essencial-
mente, o EV3 envia ao sensor mensagens de SELECAQ, reagindo a uma demanda do

usuario para a troca de modo no programa. Essa mensagem é composta por 3 bytes:

e 43: indica a demanda de mudanca de modo do sensor;

e 00/01/02: 00 indica a troca para o modo de identificagao de cores, 01 para formas

Capitulo 5. Metodologia 41

e 02 para faces;

e Checksum: byte de verificacao.

#Espera alguma informacao enviada pela funcao Calculo
if not q.empty():
#Recupera essa informacao
msg = q.get()
#Envia essa informacao para a UART (para o Bloco Inteligente [Tx])
v.write(bytearray.fromhex(msg))
#Le constantemente a UART [RX]

info= v.read()

#Verifica a mensagem de modo
if info:
#Se recebeu uma mensagem de selecao:
if (info.encode("hex")==’43"):
#Le o proximo byte (00,01 ou 02)

info = v.read()

if (info.encode("hex")=="017)
#Caso modo 01 envia modo 1 a funcao Calculo

t.put (modo)

elif (info.encode("hex")==’02’)
#Caso modo 02 envia modo 2 a funcao Calculo

t . put (modo)

Calculo tem como objetivos principais o tratamento das imagens capturadas pela
camera e o alinhamento do modo selecionado pelo usuério com a construcao correta da
mensagem que sera enviada a fungao wartData e, posteriormente, ao bloco inteligente. A

mensagem de dados construida por essa funcao apresenta a seguinte forma:

e D8/D9/D2: indica o modo do sensor (D8 = modo 0, D9 = modo 1 e D2 = modo
2);

e Dados: informacao recuperada a partir do tratamento de imagens realizado. Seu
tamanho varia em fungao do modo selecionado (8 bytes = modo 0 e 1 e 4 bytes =
modo 2);

e Checksum: byte de verificacao

Capitulo 5. Metodologia 42

#Verifica se recebeu alguma informacao do uartData (no caso o modo)
if not t.empty():
#Recupera essa informacao
modo = t.get()
#Se modo O (MODO PADRAQ)
if modo ==
#Color Tracker
#Execucao da funcao de identificacao de cores
res = col.ColourTrack(capture)
#Aplicacao da funcao "checksum" para construir a mensagem
msg = cs.cksum(res,modo)
elif modo ==
#Form Tracker

#Execucao da funcao de identificacao de formas

res = shp.ShapeTracker (capture)
msg = cs.cksum(res,modo)
elif modo ==

#Face Tracker
#Execucao da funcao de identificacao de rostos
es = face.FaceTracker (capture,faceCascade)
msg = cs.cksum(res,modo)
#Envia a mensagem para a funcao uartData
q.put (msg)
#Tempo de espera entre 2 mensagens enviadas

time.sleep(0.05)

Checksum ¢ a fungao secundaria, utilizada por Calculo, responséavel por gerar o
byte de verificagao da mensagem e montar a mensagem final a ser enviada. Sendo assim,
essa funcao recebe os dados brutos gerados pelas fungoes de tratamento (msg) e o modo de
execucao (modo) e retorna a mensagem final completa, ou seja, com o byte de identificacao

de modos no inicio e o de verificagao no final:

#Numero de bytes contidos na mensagem
nbytes=len(msg)
M=’
for i in range(0, nbytes):
#Cria-se um vetor com a string msg
M=M+"{:02x}".format (msgl[i])
#Incluimos o modo no inicio da mensagem
if modo ==

M =’D8’+M

Capitulo 5. Metodologia 43

elif modo == 1:

M =’D9’+M
elif modo == 2:
M =’D2’+M

msg = bytearray.fromhex (M)
nbytes=1len(msg)
R=0x00
#Faz-se XOR entre cada byte da mensagem
for x in range(O,nbytes):
R=R"msg[x]
#Finaliza-se com XOR ff
CS=R"0xff
#Monta a mensagem
msgCS=M + "{:02x}".format (CS)

return msgCS

As funcoes de tratamento de imagem seguem um padrao basico comum, diferenciando-
se apenas em suas funcionalidades especificas. Elas sao implementadas com a utilizagao da
biblioteca OpenC'V.cv2, que apresenta funcoes standards para a identificacao de objetos e
caracteristicas especificas da imagem, como é o caso, por exemplo, da funcao contours,
capaz de identificar curvas juntando todos os pontos continuos (isto é, ao longo da fronteira)
que tenham a mesma cor ou intensidade. Os “contornos”sao uma ferramenta ttil para a

analise de formas e deteccao de objetos.

#Captura um frame de imagem

ret, image = capture.read()

#Aplica um filtro sobre o frame para converter a imagem para escalas de
cinza se flag igual a COLOR_BGR2GRAY ou HSV se COLOR_BGR2HSV

gray = cv2.cvtColor(image, cv2.flag)

#Implementa da funcao que encontra no frame as caracteristicas desejadas
(seja cor, foma ou o numero de faces)

#Identifica o numero de objetos encontrados

for x in objs:
#Dentre todos os objetos selecionados, apenas o maior sera identificado
if area>max_area:

#Determina o vetor de informacao a ser enviado

res=np.int_(<VALORES>)

return res

ColorTrack ¢ a funcao que implementa a identificagao de cores. Nela sao definidas

Capitulo 5. Metodologia 44

faixas de cores, no formato RGB, que sdo expressos em vetores na forma [RED, GREEN, BLUE].

Esses valores foram obtidos de forma experimental, e o resultado se encontra a seguir:

e Vermelho: max = [5, 255, 255] — min = [0, 150, 0]
e Azul: max = [130, 255, 255] — min = [100, 100, 100]

e Verde: max = [80, 255, 255] — min = [40, 100, 100]

Utiliza-se, entao, a funcao findContours para identificar qualquer objeto com as

caracteristicas descritas pelas faixas de cores.

ShapeTracker é a funcao que implementa a identificacao de formas simples. Nela,
foram contabilizados o niimero de linhas que compoem os poligonos identificados na
imagem, e cada uma das formas desejadas foi associada a um nimero especifico de linhas,

de maneira que:

e Triangulo: 3 linhas
e Quadrado: 4 linhas

e Circulo: mais de 15 linhas

Essa funcao utiliza o método approrPolyDP, o qual aproxima as formas detectadas
por uma curva poligonal com a precisao especificada, para identificar o nimero de lados

de todos os poligonos destacados.

FaceTracker ¢ a funcao que implementa a identificacao de faces. Utiliza-se
um método especifico, chamado Haar Cascades (VIOLA P. ; MITSUBISHI ELECTR.
RES. LABS., 2001), o qual utiliza uma abordagem baseada na aprendizagem de méquina,
onde uma funcdo “cascata”é treinada a partir de varias imagens positivas (com o objeto)
e negativas (sem o objeto), gerando um arquivo .zml com as caracteristicas do objeto em

andlise. Esse arquivo é, em seguida, utilizado na deteccao deste objeto em outras imagens.

5.3.2 Execugao no Boot (Edison)

Um dos requisitos do projeto é a inicializagao automatica das funcionalidades do sensor,
evitando assim a necessidade do usuario de acessar a porta serial do Edison a fim de
inicializa-las manualmente. A solucao escolhida foi o langcamento das funcoes durante o
boot do microcomputador. Para isso, foi necessario escrever um programa para alterar
a programagao do shell. Mais especificamente, o cédigo shell a ser alterado chama-se
Again Shell, mais conhecido por bash. O diretorio que contém os arquivos bash e que é,

entdo, responsavel por iniciar e parar servigos durante a inicializagdo e/ou desligamento do

Capitulo 5. Metodologia 45

sistema, chama-se /etc/init.d/. Adicionou-se um script ev3.sh a esse diretério que executa

o programa do moédulo de visao no boot do Edison e continua sua execugao no background

do sistema.
#! /bin/sh
CONFIGURACOES INICIAIS DO SCRIPT
Provides: ev3
Required-Start: $all
Required-Stop:
Default-Start: 12345
Default-Stop: 06
Short-Description: Send ev3 protocol
Description: Send the module protocol to the ev3 brick.

FIM DAS CONFIGURACOES
Commandos para a Inicializacao do sistema
start O {
Comando direcionado ao compilador
export
PYTHONPATH=$PYTHONPATH: /usr/local/lib/i386-1inux-gnu/python2.7/s$
Execucao do arquivo main.py (que chama a funcao sendProtocol)
& : Esse comando permite que a execucao do programa aconteca no
background
python /home/edison/EVision/main.py &
}
Comando para o desligamento do sistema
stop(O{
Ao fim do programa eliminamos qualquer processo remanescente do
programa executado (main)
pkill -9 -f main
b
case "$1" in
start)
start
stop)
stop

*)

A interacao entre os processos e fungoes acima descritos é apresentada na forma de

diagrama de sequéncias na figura 14.

Capitulo 5. Metodologia

46

Multiprocessamento

EensoduadDats

Taxa de transmissao = VELOCIDADE

DADOS PADRAO MODO 0

T
1
| 1 |
| 1 |
| 1 |
it 1 I
| 1 |
| 1 |
: NACK ! |
| 1 |
loop / [até SELEGAO do EV3] ! |
| 1 |
| 1 |
| ! MODO=0 |
| 1 |
i L. CALCULO MODO 0!
| 1 |
EL"' DADOS MODO 0 i i
| 1 |
! NACK ! !
| o |
| 1 |
| . 1 |
| SELEGAOMODO1 |
| 1 |
loop / [até SELEGAO do EV3] ! |
| 1 |
i i MODO=1 |
| 1 |
i | CALCULOMODO 1!
| 1 |
EL"' DADOS MODO 1 E i
| 1 |
! NACK ! !
| o |
| i |
EV3 [SensofuardData [SensciCalculo

www.websequencediagrams.com

Figura 14: Troca de informagcoes entre os processos.

Capitulo 5. Metodologia 47

5.4 Glue Logic

O processo de autoidentificagao dos sensores digitais pelo EV3 possui um timeout de
aproximadamente 3s dentro dos quais, depois que os niveis de tensao dos pinos 1 e 2 forem
ajustados, o sensor deve enviar o protocolo. Sabe-se que, no Intel Edison, o tempo necessario
para que o sistema operacional se inicie apds a sua energizacao ¢ de aproximadamente
30s. Levando em consideracao que a funcao de implementacao do moédulo de visao serd
langada no final do processo de inicializacao do Edison e que o mesmo serd alimentado
pelo bloco inteligente, uma vez conectado ao EV3, o sensor deve demorar 10 vezes mais
do que o tempo disponivel para enviar o protocolo de comunicacao apds o estabelecimento

dos niveis de tensao dos pinos 1 e 2, impedindo assim a autoidentificacao do mesmo.

Faz-se necessaria a adicao de um circuito légico que permita o controle dos niveis
de tensao dos pinos 1 e 2. Como o o valor do pino 2 ja é HIGH quando o mesmo estd em
aberto, resta apenas o controle do nivel de tensao do pino 1. O objetivo deste circuito
é, entao, impor ao pino 1 uma tensao menor do que 100 mV somente quando o Edison
comecar a se comunicar com o EV3, ou seja, quando este comegar a enviar o protocolo de
comunicagao. Este tipo de circuito é mais comumente chamado de “Glue Logic” (HILL, |
pag. 537).

Durante a inicializacao do Edison, o nivel légico do seu pino Tx é HIGH. Quando o
protocolo comeca a ser enviado, o mesmo muda para o nivel LOW. A ideia desse circuito
¢ se aproveitar desse comportamento do pino Tx para ajustar a tensao do pino 1. O nivel
de tensao esperado apds a implementacao do circuito de Glue Logic no pino 1 em funcao

dos valores logicos apresentados pelo Tx do Edison esta representado na figura 15.

A Glue Logic utiliza portas légicas NAND para a implementagao do circuito digital
conhecido como flip-flop (HILL, , pag. 504). A figura 16 apresenta esse circuito e a sua
tabela da verdade.

Na Glue Logic, o Tx do Edison deve se conectar ao pino SET do flip-flop. Inicial-
mente, SET estd em HIGH e CLEAR estd em LOW. Nessa configuracao, Q é LOW e Q é
HIGH. Apés aproximadamente 5 milisegundos, CLEAR deve passar de LOW para HIGH
e se manter nesse nivel durante todo o funcionamento do circuito. Faz-se necessaria a

utilizacao de um circuito temporizador. O mesmo pode ser obtido colocando um capacitor

0s +10 s +20 s +30 s +40 s
. i

#1

Figura 15: Resultado esperado com a adigao do circuito de Glue Logic.

Capitulo 5. Metodologia 48

SET
SET | CLEAR a |a
1 1 Mantém
o] 1 1 a
1 a 0 1
]] Indeterminado

CLEAR &—— >

Figura 16: Circuito e Tabela da Verdade do flip-flop de NAND.

de 470nF em série com uma resisténcia de 10 k€). Para a descarga do capacitor, coloca-se
uma resisténcia em paralelo ao mesmo de valor 10 vezes maior do que a resisténcia em
série. Nesse momento, SET e CLEAR estao ambos em HIGH, o que significa que os valores
anteriores de Q e @ sao mantidos. Dessa forma, garante-se que o estado inicial das saidas
Q e @ sera LOW e HIGH, respectivamente.

A partir desse momento, apenas o valor de SET, conectado ao Tx, pode mudar, e
até que ele mude, o estado das saidas sera mantido. Assim, quando o Tx muda para LOW
pela primeira vez, o valor de Q e @Q mudam para HIGH e LOW, respectivamente. Desse
momento em diante, o valor das saidas Q e Q serd HIGH e LOW, respectivamente, para
quaisquer valores do Tx. A sequéncia dos valores légicos dos pinos SET, CLEAR, Q e Q

sao graficamente apresentados na figura 17.

O circuito descrito fornece o comportamento esperado pelo pino 1 na saida Q.
Porém, o valor de tensao correspondente ao nivel 1légico LOW varia entre 190 e 140 mV.
Para que o médulo seja reconhecido como um sensor digital, o valor de tensao no pino 1

deve ser inferior a 100 mV.

A resolucao implementada para esse problema utiliza um transistor, que realiza
a amplificagao da corrente (HILL, | pag. 62). Dessa forma, o nivel 16gico LOW passa a

corresponder a um nivel de tensao muito proximo de 0 V. No caso da utilizacao de um

5ms ~30s

Figura 17: Valores l6gicos do flip-flop ao longo do tempo.

Capitulo 5. Metodologia 49

transistor do tipo NPN, deve se conectar a saida (), de comportamento inverso ao desejado
no pino 1, ao pino de base do transistor. Assim, a saida com o comportamento desejado
se encontra no pino coletor do transistor. Resistores devem ser colocados tanto na base

quanto no coletor do componente para limitar a corrente no mesmo.

Uma vez consolidada a resolucao do ajuste do nivel de tensao do pino 1, o circuito
de Glue Logic é também o responsavel pela robustez dessa solugao. Afim de estabilizar
ruidos de baixa frequéncia provenientes dos pinos Tx e Rx do Edison, ambos devem estar

conectados a filtros passa-altas implementados com resistores e capacitores em série.

Finalizando o circuito da Glue Logic, observou-se que o sinal do pino Tx nao ¢

potente o suficiente para ser identificado pelo EV3 de maneira constante.

A solucao implementada utiliza duas portas légicas NAND j& disponiveis no circuito.
Ambas possuem um dos pinos de entrada conectados ao VCC, configuracao na qual o
NAND passa a agir como uma porta logica inversora (NOT) do sinal presente no outro
pino de entrada. A ideia é, entao, ligar o pino de saida de uma das portas ao pino de
entrada da outra, resultando assim em uma dupla-inversao do sinal de entrada da primeira
porta NAND. Esse circuito, conhecido como buffer, fortalece o sinal enviado sem alterar o

seu valor l6gico, resolvendo assim as instabilidades do pino Tx.

Os desenhos esquematicos de fabricacao eletronica deste circuito podem ser encon-

trados no apéndice A.

50

6 RESULTADOS

O objetivo principal do projeto foi definido como sendo a construgao de um modulo de
visao integrado ao kit da LEGO MINDSTORMS EV3. O desenvolvimento desse sensor foi
dividido em duas partes principais: a implementacao da conexao entre o EV3 e o Edison;

e a implementagao do tratamento de imagens pelo Edison.

A implementagao da conexao entre o bloco inteligente e o sensor pode ser subdividida
em duas: o desenvolvimento do bloco de programacao necessario para que o EV3 seja
capaz de identificar o modulo de visao; e o envio, pelo Edison, das informacoes necessérias

para o estabelecimento da conexao entre os dois elementos.

No que concerne o bloco de programagao do EV3, os resultados obtidos foram
satisfatorios: de maneira simples, o usuario é capaz de importar o arquivo EVision.ev3b no
ambiente de programacao em blocos da LEGO e integra-lo aos outros blocos, permitindo

assim a criagao de programas mais complexos que se utilizam do moédulo de visao.

As trés funcoes que devem ser implementadas pelo médulo de visao sao previstas
neste bloco. No modo de identificacao de cores, o bloco retorna a posi¢ao horizontal e
a area do maior objeto da cor escolhida pelo usuério. De maneira analoga, o modo de
identificacao de formas retorna a posicao horizontal e a area do maior objeto da forma
filtrada. J& o modo de identificacao de faces retorna o nimero de faces detectadas e as

caracteristicas de posi¢ao horizontal e vertical e tamanho da maior face encontrada.

Uma vez que o bloco de programacao do EV3 esteja finalizado, é possivel recuperar
dele todas as informagoes necessarias para a implementacao do protocolo de comunicacao
entre o sensor e o bloco inteligente. Utilizando as bibliotecas piserial e mraa, foi possivel
desenvolver o programa sendProtocol.py que permite ao Edison o envio do protocolo
via UART para o EV3.

O mesmo, quando enviado em seguida ao ajuste dos niveis de tensao dos pinos
responsaveis pela autoidentificacao do médulo como sensor digital do EV3, é identificado
com sucesso. Porém, essa conexao direta possui alguns defeitos graves: primeiramente,
a elevada quantidade de ruidos nas portas Tx e Rx fazem com que a identificagao do
protocolo pelo EV3 fique extremamente instavel. Além disso, para que o sensor cumpra a
tarefa de autoidentificacao de maneira independente, o protocolo deve ser enviado durante
o processo de inicializagao do sistema operacional do Edison. Esse processo restringe o
momento em que os niveis logicos dos pinos de autoidentificacao devem ser ajustados,
uma vez que o envio do protocolo deve ser feito aproximadamente 3 segundos depois desse

ajuste.

Capitulo 6. Resultados 51

Faz-se entao necessaria a adicao do circuito de Glue Logic, o qual foi desenvolvido de
maneira a resolver os problemas de comunicacao encontrados. Utilizando-se de capacitores,
resistores, transistores e portas logicas NAND, a Glue Logic permitiu a integragao do
envio tardio do protocolo pelo Edison e a atenuacao dos ruidos de forma que, uma vez
ligado ao EV3, o médulo de visao é corretamente identificado dentro de um periodo de

aproximadamente 30 s.

Ja no que concerne a implementagao do tratamento de imagens pelo Edison, a
programacao foi desenvolvida em Python utilizando a biblioteca OpenCV. A camera,
conectada a porta micro USB OTG, faz a captura de imagens VGA a 30 frames por segundo.
Tanto a resolucao quanto a taxa de transmissao de imagens mostraram-se suficientes para
a aplicacao em tempo real implementada. A cada captura de imagem, os filtros de cor,
formas e face s@o implementados e as caracteristicas desejadas dos objetos identificados

sao retornados pelas respectivas fungoes.

Para o funcao de identificacao de cores, o algoritmo implementado é capaz de
identificar de maneira satisfatéria o maior objeto nas trés cores desejadas (vermelho, azul
e verde) e retornar suas posigoes horizontais e tamanhos relativos a resolugao da iamagem.
Considerando que o intervalo dos valores das cores foi definido de maneira experimental, a

variacao destes altera significantemente o resultado da funcao.

A funcao de identificagao de formas foi implementada de forma similar a de cores,
e o seu resultado foi tao satisfatério quanto o primeiro uma vez que o algoritmo é capaz
de identificar o maior objeto das trés formas desejadas (retangular, circular e triangular) e
retornar as posicoes horizontais e tamanhos. Como a identificacao das formas utiliza o
numero de arestas dos objetos como parametro de classificagao, e circulos nao tem arestas,
foi determinado que qualquer objeto com mais de 15 arestas é classificado como um circulo,

o que pode levar a resultados imprecisos para esta forma.

A implementacao da identificagao de faces, diferentemente das fungoes anterio-
res, exigiu a utilizagao do método Haar Cascades, que utiliza um arquivo .zml para a
parametrizacao das caracteristicas do rosto. Dessa forma, ela é a fungao que exige maior
processamento. Ainda assim, o resultado obtido foi satisfatorio, mesmo que o processo de

identificacao seja significantemente lento em relacao aos outros filtros utilizados.

Uma vez desenvolvidas cada uma das partes do moédulo, cria-se a necessidade de
integracao das mesmas. Este processo é realizado implementado através do conceito de
multiprocessamento. Apds o envio do protocolo de comunicagao, dois processos paralelos
sao criados. O primeiro cuida das tarefas de leitura e escrita da UART do médulo, enquanto
o segundo realiza os calculos das fungoes. O processo de leitura controla o modo selecionado
e envia esta informagcao ao processo de calculo. Este, por sua vez, faz o calculo da funcao do
modo correspondente e envia o resultado deste para o primeiro processo, que se encarrega

de envia-lo ao EV3.

Capitulo 6. Resultados 52

Color

Menu de fungbes

Valor padrio das
funcdes

Funcionamento
da Camera

Figura 18: Validacao da integracao do mdédulo de visao.

A escolha desta solucao para a integracao entre o software e o hardware desenvol-
vidos mostrou-se muito eficaz. Enquanto o tratamento da imagem nao esta finalizado, o
processo responsavel pelo envio da informacao continua enviando a tultima informacao
disponivel. Essa informacao é atualizada no momento em que o célculo ¢ finalizado e o

processo responsavel transmite o resultado.

No que concerne a reprogramabilidade do médulo, o mesmo foi projetado de maneira
que o usuario seja capaz de abrir o envélucro, retirar o conector de alimentacao da porta
micro USB Console, e se conectar via serial diretamente ao Edison. Uma vez conectado,
0 mesmo é capaz de acessar o terminal, se conectar ao Edison, parar os processos que
implementam o mddulo de visdo (uma vez que os mesmos sao langados em background no
boot do sistema) e modificar o médulo. O usudrio pode, também, configurar a rede wi-fi
do Edison e se conectar a ele via ssh, evitando assim o trabalho de desmontar o invélucro

todas as vezes que o mesmo for alterar a programacgao do sensor.

A maneira mais simples de validar o resultado obtido pela integracao de todas as

partes do projeto é atraves da utilizacao do modo de inspecao das portas de entrada do

Capitulo 6. Resultados 53

pam, & TEESSSSSS .) — = N | —
> -;j:- -j:-5 bt] = -J_-l? T Q K 4 H “"?\ --J_-fﬁ_E (== I; a.b = [=) :; a _=_ -]_v& t® > EI aalm o [=] .
N T T T o W e e [= el izt gl | [safo| |00 _—

Figura 19: Exemplo de programacao integrada aos outros blocos da LEGO.

EV3. Nele, o usuédrio é capaz de conectar os sensores as portas correspondentes e visualizar
o primeiro parametro recebido. A figura 18 apresenta um esquema com o resultado obtido
nessa validacao apds a integracao de todos os elementos. Pode-se confirmar que, para
quaisquer modos selecionados, o parametro ¢ atualizado conforme o esperado. Vale notar
que os valores que aparecem na figura sao os valores padrao das funcgoes, ou seja, eles
nao correspondem aos parametros encontrados nas figuras do funcionamento da camera,
que foram utilizadas somente para demonstrar visualmente o resultado do tratamento de

imagens.

Apés a validagao da integracao, é possivel integrar o bloco a uma programagcao mais
complexa. A figura 19 mostra um exemplo de programacao na qual o robo tenta manter
o maior objeto vermelho presente no seu campo de visao no centro do eixo horizontal
da camera. Nela, a distancia entre o centro do objeto e o centro da imagem controlam a
direcao e a velocidade com que o robo precisa virar em torno do seu préprio eixo para
colocar o objeto no centro. Caso este ja esteja no centro, o robd nao se move. Se este se
encontra préximo ao centro, o robo vira suavimente no sentido de posiciona-lo no centro.
Ja se o objeto estd muito distante do centro, o robo vira rapidamente com o objetivo de

centraliza-lo.

O resultado da implementacao deste algoritmo é conforme o esperado: o sensor
¢é capaz de se autoidentificar dados os 30 s de inicializagao do Edison e enviar os dados
coletados da funcao selecionada. E possivel coletar os valores recebidos de forma a utiliza-los
como entradas para outros blocos da LEGO. Mesmo que este algoritmo nao seja o mais
eficaz para a solucao deste problema (j& que este nao espera pelo tempo de autoidentificacao
do sensor e os resultados durante este periodo de tempo sdo imprevisiveis), o0 mesmo é

capaz de consolidar a verificagao da integracao do médulo de visao desenvolvido ao kit da
LEGO MINDSTORMS EV3.

o4

7 CONCLUSAO

No inicio do projeto, diversos requisitos funcionais e nao funcionais foram estabelecidos
a fim de guiar o desenvolvimento do moédulo de visao integrado ao EV3. No final do
projeto, é possivel revisitd-los para realizar uma anélise dos resultados obtidos na solugao

implementada.

Nela, o usudrio é capaz de conectar o sensor as portas de entrada do EV3 utilizando
os mesmos cabos dos sensores da LEGO, importar o bloco EVision.ev3b ao software de
programacao da LEGO, recuperar as informacoes deste bloco e utiliza-las em outros blocos
da LEGO, além de reprogramar o médulo, mesmo que inicialmente seja necessario abrir o

invélucro para realizar tal tarefa.

O médulo, por sua vez, consegue se autoidentificar de forma autonoma, conectar-se a
uma camera embarcada, realizar o tratamento das imagens dessa camera e associar os resul-
tados ao modo correto. Todas as funcionalidades de base planejadas foram implementadas:

identificacao de cores, formas e faces.

A solucao é leve e pequena o suficiente para nao atrapalhar a movimentacao de um
robo de LEGO ao ser embarcado ao mesmo, porém ela nao se mostrou tao robusta quanto
ela poderia ser, apresentando ainda alguns ruidos que quebram a conexao entre o sensor e

o EV3.

De maneira geral, pode-se dizer que todos os requisitos, funcionais e nao funcionais,
foram cumpridos de maneira satisfatéria, de onde conlui-se que o projeto é de possivel
implementacao e que a escolha dos materiais e da arquitetura do moédulo permitem a
criacao de um maédulo de visao integrado ao kit da LEGO MINDSTORMS EV3, que era o

objetivo incial do projeto.

7.1 Sugestoes para trabalhos futuros

A visdo computacional ainda é um dominio que estd em constante desenvolvimento. No
ambito do tratamento de imagens, o projeto oferece infinitas oportunidades de desen-
volvimento de novas funcionalidades para o moédulo, como por exemplo streaming de
imagens, identificagao de formas mais complexas, entre outras. Com o avango constante
da tecnologia, pode-se também almejar a implementacao de algoritmos de otimizacao das

funcionalidades ja implementadas nesse projeto.

Inspirada no software de blocos da LEGO MINDSTORMS, uma oportunidade

latente que nasce da realizacao desse projeto é a criagao de um software de programagao

Capitulo 7. Conclusao 55

visual de tratamento de imagens, o qual implementaria as fun¢oes da biblioteca OpenCV.

No quesito compatibilidade, o médulo poderia ser aprimorado de forma a poder

ser utilizado também com o kit da segunda geracao da LEGO, o NXT.

No que concerne o bloco de programacao do EV3, nota-se que todas as funcoes
implementadas sao do tipo “Medicao”, criando assim a oportunidade do desevolvimento
de novos modos pertencentes a outras categorias. Pode-se, por exemplo, criar um modo
do tipo “Comparacao”que realiza a conversao do valor da posicao horizontal do objeto em
porcentagem recebido pelo médulo para a informagao “direita”ou “esquerda”, ou entao o
aprimoramento das dos modos de identificacao de cores e formas no qual o usudrio seja

capaz de obter as informacoes de todas as cores simultaneamente.

56

REFERENCIAS

AD, D. F. S. T.; BURGARDC, W.; DELLAERTA, F. Robust monte carlo localization
for mobile robots. In: Artificial Intelligence Volume 128, Issues 1-2. [S.1.: s.n.], 2000. p.
99-141. Citado na pagina 17.

BUHMANN, J. et al. The mobile robot rhino. AI Magazine Volume 16 Number 2 (1995)
(© AAAI), v. 16, n. 2, p. 31-38, 1995. Full text available. Citado na pagina 17.

CAPRANI, O. RCX Manual. [S.1.], 2006. Disponivel em: (http://legolab.daimi.au.dk/
CSaEA /RCX/Manual.dir/RCXManual.html). Acesso em: 02 margo 2015. Citado na
péagina 16.

CASEYTHEROBOT. General guide to sparkfun blocks for intel edison. SparkFun
Electronics, dezembro 2014. Disponivel em: (https://learn.sparkfun.com/tutorials/
general-guide-to-sparkfun-blocks-for-intel-edison). Acesso em: 21 junho 2015. Citado 2
vezes nas paginas 23 e 26.

DAS, P. K. et al. Article: Vision based object tracking by mobile robot. International
Journal of Computer Applications, v. 45, n. 8, p. 40-42, May 2012. Full text available.
Citado na péagina 17.

DAVISONA, A. J.; KITAB, N. Sequential localisation and map-building for real-time
computer vision and robotics. In: Robotics and Autonomous Systems Volume 36, Issue /.
[S.L.: s.n.], 2001. p. 171-183. Citado na pagina 17.

DEMIRCI, B. et al. Implementing hog amp; amdf based shape detection algorithm for
computer vision amp; robotics education using lego mindstorms nxt. In: Technological
Advances in FElectrical, Electronics and Computer Engineering (TAEECE), 2013
International Conference on. [S.1.: s.n.], 2013. p. 288-293. Citado na pagina 18.

EDUCATION, L. LEGO FEducation: Lego education worldwide. The LEGO Group,
2015. Institutional website. Disponivel em: (http://education.lego.com /fr-fr/about-us/
lego-education-worldwide /our-company). Acesso em: 25 setembro 2015. Citado na pégina
15.

ELECTRONICS123. Electronics123.com,inc: Sb101lc usb cmos board camera.
Electronics123.com,inc. Disponivel em: (http://www.electronics123.com/shop/product/
sb101c-usb-cmos-board-camera-module-52047search=SB101C+USB+CMOS+Board+
Camera+Module). Acesso em: 25 setembro 2015. Citado 2 vezes nas paginas 23 e 27.

GASPARI, M. Get started in robotic vision. Robot Science and Technology Magazine,
n. 8, p. 51-52, Feb/Mar 2001. Citado na pagina 18.

HILL, P. H. W. The Art of Electronics. [S.l.]: Cambridge University Press. Citado 2
vezes nas paginas 47 e 48.

HITECHNIC (Ed.). Pagina Web Institucional, HiTechnic Products. 2001-2012. Disponivel
em: (https://www.hitechnic.com/). Acesso em: 19 junho 2015. Citado na pégina 16.

http://legolab.daimi.au.dk/CSaEA/RCX/Manual.dir/RCXManual.html
http://legolab.daimi.au.dk/CSaEA/RCX/Manual.dir/RCXManual.html
https://learn.sparkfun.com/tutorials/general-guide-to-sparkfun-blocks-for-intel-edison
https://learn.sparkfun.com/tutorials/general-guide-to-sparkfun-blocks-for-intel-edison
http://education.lego.com/fr-fr/about-us/lego-education-worldwide/our-company
http://education.lego.com/fr-fr/about-us/lego-education-worldwide/our-company
http://www.electronics123.com/shop/product/sb101c-usb-cmos-board-camera-module-5204?search=SB101C+USB+CMOS+Board+Camera+Module
http://www.electronics123.com/shop/product/sb101c-usb-cmos-board-camera-module-5204?search=SB101C+USB+CMOS+Board+Camera+Module
http://www.electronics123.com/shop/product/sb101c-usb-cmos-board-camera-module-5204?search=SB101C+USB+CMOS+Board+Camera+Module
https://www.hitechnic.com/

Referéncias 57

INDUSTRIES, D. (Ed.). Pagina Web Institucional, Dexter Industries. 2015. Disponivel
em: (http://www.dexterindustries.com/site/). Acesso em: 19 junho 2015. Citado na
pagina 16.

INTEL. Intel Edison Development Platform. [S.l.], 2015. Disponivel em: (http:
/ /download.intel.com /support /edison /sb/edison_pb_331179002.pdf). Acesso em: 30
setembro 2015. Citado na pagina 25.

KIRILLOV, A. LEGO Pan Tilt Camera and Objects Tracking. 2008. Disponivel em: (http:
//www.codeproject.com/Articles/31104 /Lego-Pan-Tilt-Camera-and-Objects- Tracking).
Acesso em: 02 margo 2015. Citado na pagina 19.

KIRILLOV, A. AForge. NET framework: Detecting some simple shapes in images. 2010.
Disponivel em: (http://www.aforgenet.com/articles/shape_checker/). Acesso em: 02 margo
2015. Citado na pagina 19.

KOHLER, S. lejos ev3 wiki: Uart sensor protocol. Sourcefourge, fevereiro 2015. Disponivel
em: (http://sourceforge.net/p/lejos/wiki/UART %20Sensor%20Protocol/). Acesso em: 30
setembro 2015. Citado 3 vezes nas paginas 33, 92 e 93.

LEGO. LEGO MINDSTORMS Education NXT User Guide. [S.1.], 2006. Disponivel em:
(http://cache.lego.com/downloads/education/9797_LME_UserGuide_US_low.pdf). Acesso
em: 02 marco 2015. Citado na péagina 16.

LEGO. Creating Blocks for LEGO Mindstorms EV3. [S.1], 2013. Disponivel em:
(http://www.lego.com/en-us/mindstorms/downloads). Acesso em: 25 setembro 2015.
Citado 2 vezes nas péaginas 29 e 30.

LEGO. Inanimate Reason: Lego® education evolves stem learning with

the next generation lego mindstorms®) education ev3 platform. The

LEGO Group, 2013. Disponivel em: (http://inanimatereason.com/blog/2013/01/
lego-education-evolves-stem-learning-with-the-next-generation-lego-mindstorms-education-ev3-platfor
). Acesso em: 22 abril 2015. Citado na pégina 23.

LEGO. LEGO MINDSTORMS EVS3: History of lego robotics. The LEGO Group, 2013.
Institutional website. Disponivel em: (http://www.lego.com/es-es/mindstorms/history).
Acesso em: 02 margo 2015. Citado na pagina 15.

LEGO. LEGO MINDSTORMS EV3 - Hardware Developer Kit. [S.1.], 2013. Disponivel em:
(http://www.lego.com/en-us/mindstorms/downloads). Acesso em: 25 setembro 2015.
Citado 4 vezes nas paginas 24, 32, 33 e 35.

LEGO. LEGO MINDSTORMS EVS3 - User Guide. [S.l.], 2013. Disponivel em:
(http://www.lego.com/en-us/mindstorms/downloads). Acesso em: 25 setembro 2015.
Citado 2 vezes nas péaginas 24 e 29.

LEGO. LEGO MINDSTORMS EV3 User Guide. [S.l], 2013. Disponivel em:
(http://www.lego.com/en-us/mindstorms/products/31313-mindstorms-ev3). Acesso em:
02 margo 2015. Citado na pagina 16.

MAYNES-AMINZADE, D.; WINOGRAD, T. I. T. Eyepatch: prototyping camera-based
interaction through examples. In: UIST °07 Proceedings of the 20th annual ACM
symposium on User interface software and technology. [S.1.: s.n.], 2007. p. 33-42. Citado
na pagina 17.

http://www.dexterindustries.com/site/
http://download.intel.com/support/edison/sb/edison_pb_331179002.pdf
http://download.intel.com/support/edison/sb/edison_pb_331179002.pdf
http://www.codeproject.com/Articles/31104/Lego-Pan-Tilt-Camera-and-Objects-Tracking
http://www.codeproject.com/Articles/31104/Lego-Pan-Tilt-Camera-and-Objects-Tracking
http://www.aforgenet.com/articles/shape_checker/
http://sourceforge.net/p/lejos/wiki/UART%20Sensor%20Protocol/
http://cache.lego.com/downloads/education/9797_LME_UserGuide_US_low.pdf
http://www.lego.com/en-us/mindstorms/downloads
http://inanimatereason.com/blog/2013/01/lego-education-evolves-stem-learning-with-the-next-generation-lego-mindstorms-education-ev3-platform/
http://inanimatereason.com/blog/2013/01/lego-education-evolves-stem-learning-with-the-next-generation-lego-mindstorms-education-ev3-platform/
http://inanimatereason.com/blog/2013/01/lego-education-evolves-stem-learning-with-the-next-generation-lego-mindstorms-education-ev3-platform/
http://www.lego.com/es-es/mindstorms/history
http://www.lego.com/en-us/mindstorms/downloads
http://www.lego.com/en-us/mindstorms/downloads
http://www.lego.com/en-us/mindstorms/products/31313-mindstorms-ev3

Referéncias 58

MINDSENSORS (Ed.). NXTCam v4 User Guide. [S.l.], 2014. Disponivel em:
(www.mindsensors.com/index.php?module=documents&JAS_DocumentManager_op=
downloadFile&JAS File.id=1365). Citado na pagina 20.

MINDSENSORS.COM (Ed.). Pagina Web Institucional, Mindsensors.com. 2005-2015.
Disponivel em: (https://www.mindsensors.com/). Acesso em: 25 setembro 2015. Citado
na pagina 16.

MORAL, J. A. B. Develop leJOS programs Step by Step. [s.n.], 2008. Disponivel em:
(http://www.juanantonio.info/lejos-ebook/). Citado 2 vezes nas paginas 19 e 20.

MORTENSEN, T. F. The lego history: The lego group history. The LEGO Group, janeiro
2012. Disponivel em: (http://www.lego.com/en-us/aboutus/lego-group/the_lego_history).
Acesso em: 25 setembro 2015. Citado na pagina 15.

OPENCV (Ed.). Pagina Web Institucional, OpenCV.org. 2015. Disponivel em:
(https://www.opencv.org/). Acesso em: 07 outubro 2015. Citado na pagina 37.

ORLANDO, J. R. AVRcam User’s Manual. [S.1.], 2004. Disponivel em: (http:
//www.jrobot.net/Download /AVRcam_Users_Manual v1_4.pdf). Acesso em: 02 margo
2015. Citado na pagina 20.

PET Mecatronica - Automacao e Sistemas: Sobre o workshop de robética para
alunos do lo ano da epusp. 2015. Disponivel em: (http://sites.poli.usp.br/pmr/pet/
projetos_workshoprobo.asp). Acesso em: 18 novembro 2015. Citado na pagina 13.

STEVENSON, D. E.; SCHWARZMEIER, J. D. Building an autonomous vehicle by
integrating lego mindstorms and a web cam. In: SIGCSE °07 Proceedings of the 38th
SIGCSE technical symposium on Computer science education. [S.1.: s.n.], 2007. p. 165-169.
Citado na péagina 18.

TRUNG, P.; AFZULPURKAR, N.; BODHALE, D. Development of vision service in
robotics studio for road signs recognition and control of lego mindstorms robot. In:
Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on. [S.1.:
s.n.], 2009. p. 1176-1181. Citado 2 vezes nas paginas 17 e 19.

SULIGOJ, F. et al. Object tracking with a multiagent robot system and a stereo vision
camera. In: 24th DAAAM International Symposium on Intelligent Manufacturing and
Automation, 2013. [S.1.: s.n.], 2013. p. 968-973. Citado na pagina 17.

VALK, L. Robot Square: Ev3 and nxt: Differences and compatibility. 2013. Disponivel em:
(http://robotsquare.com/2013/07/16 /ev3-nxt-compatibility /). Acesso em: 02 margo 2015.
Citado na péagina 15.

VIOLA P. ; MITSUBISHI ELECTR. RES. LABS., C. M. U. . J. M. Rapid object
detection using a boosted cascade of simple features. Computer Vision and Pattern
Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on (Volume:1), 2001. Acesso em: 21 junho 2015. Citado na pégina 44.

ZHENJUN, L.; NISAR, H.; MALIK, A. A framework for real time indoor robot navigation
using monte carlo localization and orb feature detection. In: Consumer Electronics (ISCE
2014), The 18th IEEE International Symposium on. [S.l.: s.n.], 2014. p. 1-2. Citado na
pagina 19.

www.mindsensors.com/index.php?module=documents&JAS_DocumentManager_op=downloadFile&JAS_File_id=1365
www.mindsensors.com/index.php?module=documents&JAS_DocumentManager_op=downloadFile&JAS_File_id=1365
https://www.mindsensors.com/
http://www.juanantonio.info/lejos-ebook/
http://www.lego.com/en-us/aboutus/lego-group/the_lego_history
https://www.opencv.org/
http://www.jrobot.net/Download/AVRcam_Users_Manual_v1_4.pdf
http://www.jrobot.net/Download/AVRcam_Users_Manual_v1_4.pdf
http://sites.poli.usp.br/pmr/pet/projetos_workshoprobo.asp
http://sites.poli.usp.br/pmr/pet/projetos_workshoprobo.asp
http://robotsquare.com/2013/07/16/ev3-nxt-compatibility/

Apéndices

APENDICE A - DESENHOS DE
FABRICACAO ELETRONICA DA
PLACA DE CIRCUITO GLUE LOGIC

Tabela 2: Lista de componentes da placa de circuito Glue Logic.

60

Componente | Valor | Quantidade | Descricao

IC1 7400 1 Quadriple 2-Input Positive-NAND Gates
Q1 2N3904 | 1 Transistor NPN

C1 470nF |1 Capacitor ceramico

C2 330pF |1 Capacitor ceramico

C3 10mF 1 Capacitor eletrolitico

R1 10K2 1 Resistor

R2,4 100K2 | 2 Resistor

R3 22KQ2 1 Resistor

R6 22KQ |1 Resistor

R5 22052 1 Resistor

J1 RJ12 1 Conector fémea RJ12 com ajuste direito
J2 - 1 Conector fémea de 6 fios

J2

TYPYEE

JP1
Lt

| 8 |
T SR T
aNO aNO
[{e]
©
|:| s
0 <+TMAN -~
o| w| +| ™| Nl -
wol l
o
|
H
—] aNo
aNO
—=—
20 aNO
g 10 |
> ~ L IT < ¢ LI
vy aNO
—
g I
%]
<
3]
8 — 1 |
SR 7L I 4 T
1y [Re} aNO
—
7L
[4-]
vl Qo L

d'0l

69v'0

0.461

0.128

2.4

0.126

cl'e

8657

v'e

£99'0

[SVAN

63

APENDICE B - ARQUIVOS DO
BLOCO EVISION.EV3B

A seguir serao apresentados os arquivos presentes no bloco EVision.ev3b.

B.1 /EVision/

pt
images
- strings
4 en-US
images
4 pt
images
4 Vis
MXT
PER

EVision é o diretério principal deste bloco. Nele constam todos os outros diretérios, além

do arquivo principal blocks.zml.

B.1.1 /EVision/blocks.xml

<?xml version="1.0" encoding="utf-8"7>
<EditorDefinitions>
<PolyGroups ModuleName="EVision" ModuleVersion="1.00">
<PolyGroup Name="EVision" BlockFamily="Sensor">
<Parameter Name="Direction" Direction="Input" DataType="UInt32"
DefaultValue="2" Configuration="Identification_WaitForChange.xml"
Identification="Identification_WaitForChange.xml" />
<Parameter Name="Port" CompilerDirectives="OneInputPort"
Direction="Input" DefaultValue="1.4" />
<Parameter Name="PositionX" DataType="Single" Direction="Output"
Identification="Identification_PositionX.png" />
<Parameter Name="AreaSize" DataType="Single" Direction="Output"

Identification="Identification_AreaSize.png" />

APENDICE B. Arquivos do bloco EVision.ev3b

<Parameter Name="Faces" DataType="Single" Direction="Output"
Identification="Identification_Faces.png" />

<Parameter Name="PositionY" DataType="Single" Direction="Output"
Identification="Identification_PositionY.png" />

<Parameter Name="Color" DataType="Single" Direction="Input"
DefaultValue="1" Identification="Identification_Set0fColors.xml"
Configuration="Identification_Set0fColors.xml" />

<Parameter Name="Shape" DataType="Single" Direction="Input"
DefaultValue="1" Identification="Identification_Set0OfShapes.xml"
Configuration="Identification_SetOfShapes.xml" />

<Hardware>

<EV3PlotColor>#ff5d5d5d</EV3PlotColor>

<EV3AutoID>66</EV3AutoID>

<Direction>Input</Direction>

<DefaultPort>1.4</DefaultPort>

</Hardware>

<Block>

<Mode>MeasureColorSeeker</Mode>

<Reference Type="VILib" Name="EVColor.vix" />

<PaletteInfo Weight="0.5" />

<ParameterReference Name="Port" />

<ParameterReference Name="Color" />

<ParameterReference Name="PositionX" CompilerDirectives="Result"/>

<ParameterReference Name="AreaSize" CompilerDirectives="Result"/>

<BlockInterface>Selector</BlockInterface>

<Flags>PBROnly</Flags>

<Hardware>RudolphEV</Hardware>

<HardwareModeInfo Name="EV-COL" ID="0" Range="0,100" Unit="%" />

</Block>

<Block>

<Mode>MeasureShapeSeeker</Mode>

<Reference Type="VILib" Name="EVShape.vix" />

<ParameterReference Name="Port" />

<ParameterReference Name="Shape" />

<ParameterReference Name="PositionX" CompilerDirectives="Result"/>

<ParameterReference Name="AreaSize" CompilerDirectives="Result"/>

<BlockInterface>Selector</BlockInterface>

<Flags>PBROnly</Flags>

<Hardware>RudolphEV</Hardware>

<HardwareModeInfo Name="EV-SHP" ID="1" Range="0,100" Unit="J" />

</Block>

<Block>

APENDICE B. Arquivos do bloco EVision.ev3b

65

<Mode>MeasureFaceSeeker</Mode>
<Reference Type="VILib" Name="EVFace.vix" />
<ParameterReference Name="Port" />
<ParameterReference Name="Faces" CompilerDirectives="Result" />
<ParameterReference Name="AreaSize" CompilerDirectives="Result" />
<ParameterReference Name="PositionX" CompilerDirectives="Result"/>
<ParameterReference Name="PositionY" CompilerDirectives="Result"/>
<BlockInterface>Selector</BlockInterface>
<Flags>PBROnly</Flags>
<Hardware>RudolphEV</Hardware>
<HardwareModeInfo Name="EV-FACE" ID="2" Range="0,10" Unit="%" />
</Block>
</PolyGroup>
</PolyGroups>
<Hardwares>
<Hardware>
<Name>RudolphEV</Name>
<Label>EV</Label>
<Target>PBR</Target>
<Direction>Input</Direction>
<AutoID>66</AutoID>
<HardwareIcon Path="Hardware_ PBR_EV.png" />
<!-- Green —-->
<ColorHEX>#008000</ColorHEX>
<RangeScale>0,1000</RangeScale>
<Mode Name="EV-Col" ID="0" Unit="%" />
<Mode Name="EV-Shp" ID="1" Unit="}" />
<Mode Name="EV-Face" ID="2" Unit="%" />
</Hardware>
</Hardwares>

</EditorDefinitions>

APENDICE B. Arquivos do bloco EVision.ev3b 66

B.2 /EVision/VIs/

| EVision
4 help
en-Us
pt
images
4 strings
E en-US
images
F pt

VIs é o diretério que contém os cédigos .viz que controlam o bloco. Nele encontram-se
todos os codigos que sao comuns tanto ao NXT quanto ao EV3, além dos diretérios NXT
e PBR os quais contém os cédigos especificos a cada um dos blocos inteligentes. Como a
adaptcao do bloco para o NXT nao faz parte do escopo deste projeto, o diretério NXT se
encontra vazio. O diretério PBR, portanto, contém todos os arquivos .viz referentes ao
EV3.

B.2.1 /EVision/VIs/PBR/EVColor.vix

=[1, Default = J=

4| Port [&| PositionX

] +| AreaSize

] S |

Y= Color

O arquivo EVColor.vixz é o cédigo responsavel pelo modo de identificagao de cores, chamado
MeasureColorSeeker. Como dito anteriormente, sua programacao é realizada com o
auxilio de blocos de mais baixo nivel disponiveis no ambiente de programacao especifico
para a criagao de novos blocos da LEGO. Os “gray blobs”sao os blocos cinzas com o ponto

de interrogacao vermelho.

Nesta funcao, o parametro Port referencia a porta selecionada. Seus parametros

sao recuperados pelo bloco cinza PBrickPortConvertInput. Estes sao usados como

APENDICE B. Arquivos do bloco EVision.ev3b 67

entrada para o bloco cinza PBrickInputReadySI8 que é o responsavel pela recuperagao
das informacoes enviadas pelo sensor. Os demais parametros de entrada deste bloco sao: o
identificador do sensor (66); o modo ao qual as informagoes recuperadas pertencem (0); e

o nimero de informagoes enviadas pelo sensor, que serao recuperadas nas saidas do bloco
(8).

Sabe-se que, no modo de identificacao de cores, o médulo de visao envia ao EV3 as
posicoes horizontais e o tamanho dos maiores objetos nas cores vermelha, azul e verde.
Cabe, entao, ao bloco de casos (Case) a sele¢ao da informagao que estara disponivel
nos parametros de saida XPosition e AreaSize. A selecao é feita em funcao do valor
do parametro de entrada Color. Desta forma, o usuario é capaz de filtrar a informacao

disponivel nas saidas do bloco.

B.2.2 /EVision/VIs/PBR/EVShape.vix

<|1, Default = |=

4| Port ? e 4| PositionX
I 4| AreaSize

ald]

=)
5

b=t Shape

O arquivo EVShape.viz é o cddigo responsavel pelo modo de identificacao de formas,
chamado MeasureShapeSeeker. A estrutura desta funcao é idéntica aquela apresentada
em EVColor.viz. Isso porque, de maneira analoga ao modo de identificacao de cores, o
modo de identificacao de formas é implentado de forma que o moédulo de visao envia
ao EV3 as posigoes horizontais e o tamanho dos maiores objetos nas formas retangular,

circular e triangular.

Nota-se, porém, algumas diferencas nos seguintes parametros: no modo ao qual
as informagoes recuperadas pertencem (1) e no parametro Shape usado na sele¢ao das

informacoes disponiveis nos parametros de saida do bloco.

APENDICE B. Arquivos do bloco EVision.ev3b 68

B.2.3 /EVision/VIs/PBR/EVFace.vix

4| Port ? & | Faces
- | AreaSize
(515 ? & | Position
2 4| PositionY
4 &

O arquivo EVFace.viz é o codigo responsavel pelo modo de identificagao de faces,
chamado MeasureFaceSeeker. Esta fungao um “gray blob”diferente para a recuperacao
doas informacoes enviadas pelo sensor: o PBrickInputReadySI4. Os parametros de
entrada deste bloco sdo os mesmos: o identificador do sensor (66); o modo ao qual as

informagoes recuperadas pertencem (2); e o nimero de informagoes enviadas pelo sensor(4).

Nesse modo, sabe-se que o modulo de visao envia ao EV3 o niimero de faces detecta-
das, a posigao horizontal, vertical e o tamanho da maior face detectada. Diferentemente das
outras fungoes, nao é necessaria a filtragem das informagoes enviadas, pois estas pertencem

aos parametros de saida Faces, XPosition, YPostion e AreSize, respectivamente.
B.3 /EVision/strings/

4 EVision
4 help
en-Us
pt

._images
‘,____9.__

images
4 pt
images
- Vis
MAT
PBR

strings ¢ o diretdrio que contém os subdiretéorios en-US e pt responsaveis pela exibigao
das informagoes dos parametros do bloco em inglés e em portugués, respectivamente. Cada
um desses subdiretorios contém um arquivo blocks.xml e um diretério images com os
arquivos Identification_SetOfColors.oml e Identification_SetOfShapes.xml.

B.3.1 /EVision/strings/en-US /blocks.xml

APENDICE B. Arquivos do bloco EVision.ev3b 69

<?7xml version="1.0" encoding="utf-8"7>
<EditorStrings>
<PolyGroups ModuleName="EVision'">
<PolyGroup Name="EVision" DisplayName="EVision Sensor"
DisplayNamePrefix="EVision">
<Description><! [CDATA [<p>Context help for PolyGroup EVision
Sensor</p>]]1></Description>
<Parameter Name="Direction" DisplayName="Direction"
Link="page.html?Path=blocks’2FLEG0,2FWait.html#Direction">
<Description><! [CDATA [<p>Type: Numeric
Notes:
Direction for a Numeric sensor value to change.
Used in Sensor
Change Modes that have an Amount input.
0 = Increase
1 =
Decrease
2 = Any</p>]]1></Description>
</Parameter>
<Parameter Name="Port" DisplayName="Port"
Link="page.html?Path=editor}2FPortSelector.html#Port">
<Description><! [CDATA[Many programming blocks require that you select
the ports on the EV3 Brick (A, B, C, D, 1, 2, 3, and 4) that these
blocks will use. The Port Selectors are in the top right-hand corner
of these blocks.]]></Description>
</Parameter>
<Parameter Name="PositionX" DisplayName="X Position">
<Description><! [CDATA [<p>Type: Numeric
Values: 0 to
100
Notes: The biggest object position on X axis. O means
to the left, and 100 means to the right. The X Position will be 0 if
the object is not detected at all.</p>]]></Description>
</Parameter>
<Parameter Name="AreaSize" DisplayName="Area'">
<Description><! [CDATA [<p>Type: Numeric
Values: 0 to
100
Notes: The biggest object proximity. O means far away,
and 100 means very close. The Area will be O if the object is not
detected at all.</p>]]1></Description>
</Parameter>
<Parameter Name="Color" DisplayName="Color">
<Description><! [CDATA [<p>Type: Numeric
Allowed Values:
1 - 3
Notes: The color parameter on the EVision Sensor to
detect.</p>]1></Description>
</Parameter>
<Parameter Name="Shape" DisplayName="Shape">
<Description><! [CDATA [<p>Type: Numeric
Allowed Values:
1 - 3
Notes: The shape parameter on the EVision Sensor to

APENDICE B. Arquivos do bloco EVision.ev3b 70

detect.</p>]]1></Description>
</Parameter>
<Parameter Name="Faces" DisplayName="# of faces'">
<Description><! [CDATA [<p>Type: Numeric
Values: 0 to
infinite
Notes: The number of faces
detected.</p>]]></Description>
</Parameter>
<Parameter Name="PositionY" DisplayName="Y Position">
<Description><! [CDATA [<p>Type: Numeric
Values: 0 to
100
Notes: The object position on Y axis. O means up, and
100 means down. The Y Position will be O if the object is not
detected at all.</p>]]></Description>
</Parameter>
<Block Mode="MeasureColorSeeker" DisplayName="Color Seeker">
<Description><! [CDATA[The Measure - Color mode uses the EVision Sensor
in Color mode. Set the Channel to the color that you want to detect.
The object parameters is output in PositionX and AreaSize. If the
object is not detected, PositionX will be O, and AreaSize will be
0.]1></Description>
</Block>
<Block Mode="MeasureShapeSeeker" DisplayName="Shape Seeker">
<Description><! [CDATA[The Measure - Shape mode uses the EVision Sensor
in Shape mode. Set the Channel to the shape that you want to detect.
The object parameters is output in PositionX and AreaSize. If the
object is not detected, PositionX will be 0, and AreaSize will be
0.]1></Description>
</Block>
<Block Mode="MeasureFaceSeeker" DisplayName="Face Seeker">
<Description><! [CDATA[The Measure - Face mode uses the EVision Sensor in
Face mode. The face parameters is output in Faces, AreaSize,
PositionX and PositionY. If the object is not detected, Faces will be
0, PositionX and PositionY will be 0, and AreaSize will be
0.]]1></Description>
</Block>
</PolyGroup>
</PolyGroups>
</EditorStrings>

B.3.2 /EVision/strings/en-US /images/Identification SetOfColors.xml

‘<?Xm1 version="1.0" encoding="utf-8"7>

APENDICE B. Arquivos do bloco EVision.ev3b 71

<Definition>
<Entry Name="RedColor" DisplayName="Red" />
<Entry Name="BlueColor" DisplayName="Blue" />
<Entry Name="GreenColor" DisplayName="Green" />

</Definition>

B.3.3 /EVision/strings/en-US /images/Identification SetOfShapes.xml

<?xml version="1.0" encoding="utf-8"7>

<Definition>
<Entry Name="SquareShape" DisplayName="Square" />
<Entry Name="CircleShape" DisplayName="Circle" />
<Entry Name="TriangleShape" DisplayName="Triangle" />

</Definition>

B.3.4 /EVision/strings/pt/blocks.xml

<?xml version="1.0" encoding="utf-8"7>
<EditorStrings>
<PolyGroups ModuleName="EVision'">
<PolyGroup Name="EVision" DisplayName="Sensor EVision"
DisplayNamePrefix="EVision">

<Description><! [CDATA[<p>Context help for PolyGroup EVision
Sensor</p>]1></Description>

<Parameter Name="Direction" DisplayName="Direcao"
Link="page.html?Path=blocks’2FLEG0,2FWait .html#Direction">

<Description><! [CDATA [<p>Tipo: Numerico
0Observacoes:
Direcao para um valor de sensor Numerico para mudar.
Usado em
Modos de alteracao do sensor que possuem uma entrada de
Quantia.
0 = Aumentar
1 = Diminuir
2 =
Indiferente</p>]]></Description>

</Parameter>

<Parameter Name="Port" DisplayName="Porta"
Link="page.html?Path=editor}2FPortSelector.html#Port">

<Description><! [CDATA[Muitos blocos de programacao exigem que voce
selecione portas no Bloco EV3 (A, B, C, D, 1, 2, 3 e 4) que estes
blocos usarao. Os seletores de porta estao no canto superior direito
destes blocos.]]></Description>

</Parameter>

<Parameter Name="PositionX" DisplayName="Posicao X">

APENDICE B. Arquivos do bloco EVision.ev3b 72

<Description><! [CDATA[<p>Tipo: Numerico
Valores: 0 a
100
0bservacoes: A posicao no eixo horizontal (X) do maior
objeto encontrado. O significa mais a esquerda e 100 significa mais a
direita. A Posicao X sera O caso nenhum objeto seja
identificado.</p>]1></Description>

</Parameter>
<Parameter Name="AreaSize" DisplayName="Area'">

<Description><! [CDATA [<p>Tipo: Numerico
Valores: 0 a
100
0bservacoes: A proximidade do maior objeto encontrado.
0 significa mais afastado e 100 significa bem proximo. A Area sera O
caso nenhum objeto seja identificado.</p>]]1></Description>

</Parameter>

<Parameter Name="Color" DisplayName="Cor">

<Description><! [CDATA [<p>Tipo: Numerico
Valores
permitidos: 1 - 3
0bservacoes: Selecao da cor a ser
identificada pelo Sensor EVIsion.</p>]]></Description>

</Parameter>

<Parameter Name="Shape" DisplayName="Forma'>

<Description><! [CDATA [<p>Tipo: Numerico
Valores
permitidos: 1 - 3
0bservacoes: Selecao da forma a ser
identificada pelo Sensor EVision.</p>]]1></Description>

</Parameter>

<Parameter Name="Faces" DisplayName="# de faces">

<Description><! [CDATA [<p>Tipo: Numerico
Valores: 0 a
infinito
0Observacoes: 0 numero de faces
detectadas.</p>]1></Description>

</Parameter>
<Parameter Name="PositionY" DisplayName="Posicao Y">

<Description><! [CDATA [<p>Tipo: Numerico
Valores: 0 a
100
0bservacoes: A posicao no eixo vertical (Y) do maior
objeto encontrado. O significa mais acima e 100 significa mais
abaixo. A Posicao Y sera O caso nenhum objeto seja
identificado.</p>]]1></Description>

</Parameter>
<Block Mode="MeasureColorSeeker" DisplayName="Identificacao de Cores">

<Description><! [CDATA[0 modo Medida - Identificacao de Cores usa o
Sensor EVision no modo de cor. Defina o parametro Cor na cor que voce
deseja identificar. Os parametros do objeto sao extraidos em Posicao
X e Area. Se nenhum objeto e identificado, Posicao X sera O e Area
sera 0.]]1></Description>

</Block>

<Block Mode="MeasureShapeSeeker" DisplayName="Identificacao de Formas">

APENDICE B. Arquivos do bloco EVision.ev3b 73

<Description><! [CDATA[0 modo Medida - Identificacao de Formas usa o
Sensor EVision no modo de forma. Defina o parametro Forma na form que
voce deseja identificar. Os parametros do objeto sao extraidos em
Posicao X e Area. Se nenhum objeto e identificado, Posicao X sera 0 e
Area sera 0.]]1></Description>

</Block>
<Block Mode="MeasureFaceSeeker" DisplayName="Identificacao de Faces">

<Description><! [CDATA[O modo Medida - Identificacao de Faces usa o
Sensor EVision no modo de faces. Os parametros da face sao extraidos
em Faces, Area, Posicao X e Posicao Y. Se nenhum objeto e
identificado, Faces sera 0, Posicao X e Posicao Y serao O, e Area
sera 0.]]></Description>

</Block>
</PolyGroup>
</PolyGroups>
</EditorStrings>

B.3.5 /EVision/strings/pt/images/Identification SetOfColors.xml

<?xml version="1.0" encoding="utf-8"7>
<Definition>
<Entry Name="RedColor" DisplayName="Vermelho" />
<Entry Name="BlueColor" DisplayName="Azul" />
<Entry Name="GreenColor" DisplayName="Verde" />

</Definition>

B.3.6 /EVision/strings/pt/images/Identification SetOfShapes.xml

<?xml version="1.0" encoding="utf-8"7>

<Definition>
<Entry Name="SquareShape" DisplayName="Retangulo" />
<Entry Name="CircleShape" DisplayName="Circulo" />
<Entry Name="TriangleShape" DisplayName="Triangulo" />

</Definition>

APENDICE B. Arquivos do bloco EVision.ev3b 74

B.4 /EVision/images/

a EVision
4 help
en-LUS

T, | —
1 images

images
F pt
images
4 4 Vs
NXT
PBR

images ¢ o diretério que contém todas as imagens referentes ao bloco. Cada

imagens possui um tamanho e um nome especificos a serem seguidos, de tal forma que:

e aimagem da palheta deve ter 20x20 pixeus e seu nome deve ser PolyGroup_< PolyGroup-

Name>_Palette.png;

e aimagem do diagrama deve ter 34x34 e seu nome deve ser PolyGroup_< PolyGroup-

Name>_Diagram.png;

e asimagens dos modos devem ter 38x22 e seu nome deve ser PolyGroup_< PolyGroup-

Name>_Mode_< PolyGroup-Name>_Diagram.png;

e as imagens de hardware devem ter 38x22 e 22x22 e seus nomes devem ser Poly-
Group_< PolyGroup-Name>_Category.png e PolyGroup_< PolyGroup-Name >_
Mode_< PolyGroup-Name>_Hardware.png para o bloco e os modos, respectiva-

mente;

e as imagens de identificacao dos parametros do bloco devem ter 22x22 e seu nome

deve ser Identification_< ParameterName>.png.

% e = = = m &) [B & [
Hardware_PBR_E Identification_Are Identification_Fac Identification_Po Identification_Po |dentification_Set |dentification_Set [dentification_Set |dentification_Set |dentification_Set Identification_Set
V.png aSize.png es.png sitionX.png sitionY.png OfColors.aml OfColors_l.png OfColors 2png OfColors 3png OfShapessxml OfShapes_1.png

® A o] . Q—; [Ty=e - e . me

Identification_Set Identification_Set PolyGroup_EVisic PolyGroup_EVisic PolyGroup_EVisic PolyGroup_EVisio PolyGroup_EVisio PolyGroup_EVisio PolyGroup_EVisio PolyGroup_EVisio PolyGroup_EVisio
OfShapes_2.png OfShapes_3.png n_Category.png n_Category_Mou n_Diagram.png n_Mode_Measure n_Mode_Measure n_Mode_Measure n_Mode Measure n_Mode Measure n_Mode Measure

seOver.png ColorSeeker_Diag ColorSeeker Disg ColorSeeker Har ColorSecker Har FaceSesker Diagr FaceSeeker Diagr
ram.png ram_MouseOve... dware.png dware_MouseQ... am.png am_MouseOver...
2 " B " o le Lo

PolyGroup_EVisio PolyGroup_EVisio PolyGroup_EVisio PolyGroup_EVisio PolyGroup_EVisio PolyGroup_EVisio PolyGroup_EVisio PolyGroup_EVisio

n_Mode Measure n_Mode Measure n_Mode Measure n_Mode Measure n_Mode Measure n_Mode Measure n_Palette.png n_Palette_Mouse

FaceSeeker Hard FaceSecker Hard ~ ShapeSecker Dia ShapeSecker Dis ShapeSeeker Har ShapeSeeker Har Over.png
ware.png ware_MouseOv... gram.png gram_MouseOv... dware.png dware_MouseO...

APENDICE B. Arquivos do bloco EVision.ev3b 75

Além das imagens, os arquivos .zml de identificagao de parametros também devem
estar neste diretério. Assim, no moédulo de visao, imagens também possui os arquivos
Identification_SetOfColors.xml e Identification_SetOfShapes.zml.

B.4.1 /EVision/images/Identification SetOfColors.xml

<?xml version="1.0" encoding="utf-8"7>

<Definition Type="Integer">
<Point Value="1" Name="RedColor" ImageSuffix="_1" />
<Point Value="2" Name="BlueColor" ImageSuffix="_2" />
<Point Value="3" Name="GreenColor" ImageSuffix="_3" />

</Definition>

B.4.2 /EVision/images/Identification SetOfShapes.xml

<?xml version="1.0" encoding="utf-8"7>

<Definition Type="Integer">
<Point Value="1" Name="SquareShape" ImageSuffix="_1" />
<Point Value="2" Name="CircleShape" ImageSuffix="_2" />
<Point Value="3" Name="TriangleShape" ImageSuffix="_3" />

</Definition>

B.5 /EVision/help/

a EVision

ot
Images
4 . strings
e en-US
images
a jlpt
images
e Vis
MAT
PBR

help é o diretério que contém os subdiretorios en-US e pt responsaveis pelo
material de apoio a utilizagao do bloco em inglés e portugueés, respectivamente. Cada um
desses subdiretorios contém um arquivo EVisionSensor.html e as imagens utilizadas por

pelo mesmo:

APENDICE B. Arquivos do bloco EVision.ev3b

76

{

EVisionSensor.pn MeasureColor.pn MeasureFace.png MeasureShape.p
9 9 ng

B.5.1 /EVision/help/en-US/EVisionSensor.html

<html>

<head>

<title>EVision Sensor Block</title>

</head>

<body BGCOLOR="FFFFFF">

<h1>EVision Sensor Block</h1>

<p>This block is the result of the final paper of the Mechatronics Engineer
undergraduate course at Escola Politécnica da Universidade de
São Paulo, written by Amanda Fernandes and Renan Marchetto and
supervised by Prof. Dr. Thiago Martins.</p>

<p> At runtime, the EVision Sensor provides specific parameters of the
selected image treatment.

 The sensor takes about 30 seconds to
initialize.

<h2>Modes</h2>

<h3>Color Seeker</h3>

<p>

This mode implements a filter for red, blue and green objects.

It has a color selector as an input and horizontal position and size of the
biggest object in the selected color detected as outputs.

</p>

<h3>Shape Seeker</h3>

<p>

This mode implements a filter for rectangular, circular and triangular shaped
objects.

APENDICE B. Arquivos do bloco EVision.ev3b 7

It has a shape selector as an input and horizontal position and size of the
biggest object in the selected shape detected as outputs.

</p>

<h3>Face Seeker</h3>

<p>

This mode implements a filter for face detection.

It’s outputs are: number of faces detected, horizontal and vertical position
and size of the biggest face detected.

</p>

<h2>Parameters</h2>

<h3>Direction, Port, PositionX, AreaSize, Faces, PositionY, Color, Shape</h3>

<p>

All parameters, with exception of "Faces", are given as a percentage of the
camera resolution (640x480).

</p>

<p>

PositionX, PositionY¥Y, AreaSize and Faces are the
object parameter returned by the sensor.

Color and Shape are the selection parameters for the sensor
functions.

Direction and Port are standard parameters for a "Measure" block.

</p>

</body>

</html>

B.5.2 /EVision/help/pt/EVisionSensor.html

<html>

<head>

<title>Bloco do Sensor EVision</title>

</head>

<body BGCOLOR="FFFFFF">

<h1>Bloco do Sensor EVision</h1>

<p>Este bloco é o resultado do trabalho de conclusão de curso de

Engenharia Mecatrônica na Escola Politécnica da Universidade

APENDICE B. Arquivos do bloco EVision.ev3b 78

de São Paulo, escrito por Amanda Fernandes e Renan Marchetto e
orientado pelo Prof. Dr. Thiago Martins.</p>

<p> Durante o seu funcionamento, o Sensor EVision fornece parâmetros
específicos do tratamento de imagens selecionado.

 0 sensor leva aproximadamente 30s
para inicializar.

<h2>Modos</h2>

<h3>Identificação de Cores</h3>

<p>

Este modo implementa um filtro para identificação de objetos nas
cores vermelha, azul e verde.

Ele possui um seletor de cor como parâmetro de entrada e a
posição horizontal e o tamanho do maior objeto identificado
na cor selecionada como parâmetros de saída.

</p>

<h3>Identificação de Formas</h3>

<p>

Este modo implement um filtro para identificação de objetos nas
formas retangular, circular e triangular.

Ele possui um seletor de formas como parâmetro de entrada e a
posição horizontal e o tamanho do maior objeto identificado
na forma selecionada como parâmetros de saída.

</p>

<h3>Identificação de Faces</h3>

<p>

Este modo implementa um filtro para identificação de faces.

Seus parâmetros de saída são: o número de faces
identificadas, as posições horizontal e vertical, o tamanho

da maior face identificada.

APENDICE B. Arquivos do bloco EVision.ev3b 79

</p>

<h2>Parâmetros</h2>

<h3>Direção, Porta, Posição X, Área, Faces,
Posição Y, Cor, Forma</h3>

<p>

Todos os parâmetros, exceto "Faces", são dados como uma
porcentagem da resolução da câmera (460x480).

</p>

<p>

Posição X, Posição Y,
Área e Faces são os parâmetros do objeto
retornado pelo sensor.

Cor e Forma são os parâmetros de
seleção das funções do sensor.

Direção0 e Porta são os parâmetros
padrão para o bloco "Medidas".

</p>

</body>

</html>

APENDICE C - DESENHOS DE
FABRICACAO DO INVOLUCRO

80

v

PARTS LIST
ITEM QTY PART NUMBER DESCRIPTION
1 1 Back Material : ABS
2 1 Front Material : ABS
3 1 Top Material : ABS

DRAWN
Amanda/Renan 19/11/2015
CHECKED

TITLE
QA
WFG Involucro Sensor
APPROVED

SIZE DWG NO REV
A4 Assembly1-1
SCALE 1 /2] lsHEET 1 OF 1

APENDICE D - PROGRAMACAOQO
(PYTHON)

D.0.3 protocol.py

82

import mraa

import checksum as cs

import time

import serial

import color_tracking as col
import shape_tracking as shp
import face_tracking as face
import cv2

import sys

from multiprocessing import Process, Queue

def uartData (q,t,v):
msg = ’D808070605040302012F°
modo = 0

v.timeout = 1

while True:
if not q.empty():
msg = q.get()

v.write(bytearray.fromhex(msg))
info= v.read()
if info:
if (info.encode("hex")=="43’):
info = v.read()
if (info.encode("hex")=="01’)
modo = 1

t.put (modo)

elif (info.encode("hex")==’02’)

APENDICE D. Programagio (Python)

83

modo = 2

t . put (modo)

def calculo (q,t):
capture = cv2.VideoCapture(-1)
faceCascade =
cv2.CascadeClassifier(’evision/haarcascade_frontalface_default.xml’)

modo = 0

while True:
if not t.empty():
modo = t.get()

if modo ==
#Color Tracker
res = col.ColourTrack(capture)
msg = cs.cksum(res,modo)
elif modo ==
#Form Tracker’
res = shp.ShapeTracker (capture)
msg = cs.cksum(res,modo)
elif modo ==
#Face Tracker
res = face.FaceTracker(capture,faceCascade)

msg = cs.cksum(res,modo)

q.put (msg)
time.sleep(0.05)

def sendprotocol():
i=0
while i <= 8:

#Turn TX pin into GPIO port
x=mraa.Gpio(35)
x.dir(mraa.DIR_0OUT)

#Keep TX > 500 ms as LOW
x.mode (2)
time.sleep(0.505)

x.mode (0)

#Initialize UART pins

APENDICE D. Programagio (Python)

84

#ATTENTION: timeout may change as the protocol changes

X

u

mraa.Uart (0)

serial.Serial(’/dev/ttyMFD1’,2400, timeout = 1.4)

#Clean RX and TX

u.flushInput ()
u.flushOutput ()

#Start protocol
print "START PROTOCOL"

msg = bytearray

u.write(msg)

msg = bytearray.

u.write(msg)

msg = bytearray.

u.write(msg)

msg = bytearray.

u.write(msg)
msg = bytearray

u.write(msg)

msg = bytearray.

u.write(msg)

msg = bytearray.

u.write(msg)

msg = bytearray.

u.write(msg)

msg = bytearray.

u.write(msg)

msg = bytearray.

u.write(msg)

msg = bytearray.

u.write(msg)

msg = bytearray.

u.write(msg)

msg = bytearray.

u.write(msg)
msg = bytearray

u.write(msg)

msg = bytearray.

u.write(msg)

msg = bytearray.

u.write(msg)

.fromhex(’4042FD’)

fromhex (’490202B6°)

fromhex (’5200E100004C”)

fromhex (’A20045562D4641434500000000000000000062°)

.fromhex (’9A01000000000000C842EE)

fromhex (’9A03000000000000C842EC)

fromhex (’9A04706374000000000006)

fromhex (’928004000300EA’)

fromhex (’990045562D534850000013)

fromhex (’9901000000000000C842ED)

fromhex (’9903000000000000C842EF)

fromhex (’9904706374000000000005°)

fromhex (’918008000300E5”)

.fromhex (’980045562D434F4C000019”)

fromhex (’9801000000000000C842EC)

fromhex (’9803000000000000C842EE")

APENDICE D. Programagio (Python)

85

msg = bytearray.fromhex(’9804706374000000000004)
u.write(msg)

msg = bytearray.fromhex(’908008000300E4’)
u.write(msg)

msg = bytearray.fromhex(’04’) #ACK

u.write(msg)

print "END PROTOCOL"

#Wait for the first byte from EV3

info=u.read()

print info.encode("hex")

#Test if ACK
i=1+1
if info:
if (info.encode("hex")==’04"):
print "ACK 04"

break

#Redefine baudrate
time.sleep(0.1)
u.baudrate=57600

q = Queue()

t = Queue()

p = Process(target=uartData, args=(q,t,u,))
k = Process(target=calculo, args=(q,t,))
p-start)

k.start ()

D.0.4 colortracking.py

import cv2, math

import numpy as np

def ColourTrack(capture):

scale_down = 1

APENDICE D. Programagio (Python)

86

f, orig_img = capture.read()

orig_img = cv2.flip(orig_img,1)

img = cv2.GaussianBlur(orig_img, (5,5), 0)

cv2.cvtColor(orig_img,cv2.COLOR_BGR2HSV)

img
img = cv2.resize(img, (len(orig_img[0])/ scale_down, len(orig_img)/

scale_down))

red_lower = np.array([0, 150, 0],np.uint8)
red_upper = np.array([5, 255, 255], np.uint8)

red_binary = cv2.inRange(img, red_lower, red_upper)

blue_lower = np.array([100, 100, 100],np.uint8)

blue_upper = np.array([130, 255, 255], np.uint8)
blue_binary = cv2.inRange(img, blue_lower, blue_upper)
green_lower = np.array([40, 100, 100],np.uint8)
green_upper = np.array([80, 255, 255], np.uint8)

green_binary = cv2.inRange(img, green_lower, green_upper)

dilation = np.ones((15,15),"uint8")
red_binary = cv2.dilate(red_binary, dilation)
blue_binary = cv2.dilate(blue_binary, dilation)

green_binary = cv2.dilate(green_binary, dilation)

contoursr, hierarchyr = cv2.findContours(red_binary, cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)

contoursb, hierarchyb = cv2.findContours(blue_binary, cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)

contoursg, hierarchyg = cv2.findContours(green_binary, cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)

max_area_r

max_area_b

max_area_g

largest_contour_r = None

largest_contour_b = None

largest_contour_g = None

cx_r=0
cx_b=0
cx_g=0

APENDICE D. Programagio (Python)

87

for idx, contour in enumerate(contoursr):
area = cv2.contourArea(contour)
if area>max_area_r:
max_area_r = area

largest_contour_r = contour

for idx, contour in enumerate(contoursb):
area = cv2.contourArea(contour)
if area>max_area_b:
max_area_b = area

largest_contour_b = contour

for idx, contour in enumerate(contoursg):
area = cv2.contourArea(contour)
if area>max_area_g:

max_area_g = area

largest_contour_g = contour

if not largest_contour_r == None:

moment_r = cv2.moments(largest_contour_r)

if moment_r["m00"]>1000/scale_down:

cx_r=np.int0(moment_r["m10"]/moment_r["m00"])

if not largest_contour_b == None:

moment_b = cv2.moments(largest_contour_b)

if moment_b["m00"]>1000/scale_down:

cx_b=np.int0(moment_b["m10"]/moment_b["m00"])
if not largest_contour_g == None:

moment_g = cv2.moments(largest_contour_g)

if moment_g["m00"]>1000/scale_down:

cx_g=np.int0(moment_g["m10"] /moment_g["m00"])

res=np.int_([cx_r*100/capture.get(3),

max_area_r*x100/(capture.get (3) *capture.get(4)),cx_bx100/capture.get(3),
max_area_b=*100/(capture.get(3)*capture.get(4)),cx_gx100/capture.get(3),

max_area_g*100/ (capture.get (3)*capture.get(4)), 0 , 0])
return res

D.0.5 shapetracking.py

APENDICE D. Programagio (Python)

import cv2, math

import numpy as np

def ShapeTracker(capture):

scale_down = 1

f, orig_img = capture.read()

orig_img = cv2.flip(orig_img,1)

cimg = cv2.GaussianBlur(orig_img, (5,5), 0)

cimg = cv2.cvtColor(cimg,cv2.COLOR_BGR2GRAY)

cimg = cv2.resize(cimg, (len(orig_img[0])/ scale_down, len(orig_img)/
scale_down))

cimg = cv2.Canny(cimg,50,190)
contours,h = cv2.findContours(cimg,cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

contours_s=[]
contours_c=[]
contours_t=[]
for cnt in contours:
approx = cv2.approxPolyDP(cnt,0.01*cv2.arcLength(cnt,True) ,True)
if len(approx)==3:
contours_t=contours_t+[cnt]
elif len(approx)==4:
contours_s=contours_s+[cnt]
if len(approx) > 15:

contours_c=contours_c+[cnt]

max_area_s=0
max_area_c=0
max_area_t=0
largest_contour_s=None
largest_contour_c=None
largest_contour_t=None
cx_s=0

cx_c=0

cx_t=0

for idx, contour in enumerate(contours_s):

area = cv2.contourArea(contour)

APENDICE D. Programagio (Python) 89

if area>max_area_s:
max_area_s = area

largest_contour_s = contour

for idx, contour in enumerate(contours_c):
area = cv2.contourArea(contour)
if area>max_area_c:
max_area_c = area

largest_contour_c = contour

for idx, contour in enumerate(contours_t):
area = cv2.contourArea(contour)
if area>max_area_t:
max_area_t = area

largest_contour_t = contour

if not largest_contour_s == None:
moment_s = cv2.moments(largest_contour_s)
if moment_s["m00"]>1000/scale_down:

cx_s=np.int0(moment_s["m10"]/moment_s["m00"])

if not largest_contour_c == None:
moment_c = cv2.moments(largest_contour_c)
if moment_c["m00"]>1000/scale_down:

cx_c=np.int0(moment_c["m10"]/moment_c["m00"])

if not largest_contour_t == None:
moment_t = cv2.moments(largest_contour_t)
if moment_t["m00"]>1000/scale_down:
cx_t=np.intO0(moment_t["m10"]/moment_t ["m00"])

res=np.int_([cx_s*100/capture.get(3),
max_area_s*100/ (capture.get (3)*capture.get(4)),cx_c*100/capture.get(3) ,max
max_area_t*100/ (capture.get (3) *capture.get(4)),0,0])

return res

x_area_cx*l

D.0.6 facetracking.py

import cv2

import numpy as np

APENDICE D. Programagio (Python)

90

import sys

def FaceTracker(capture, faceCascade):

Capture frame-by-frame

ret, image = capture.read()

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(
gray,

scaleFactor=1.1,

minNeighbors=5,

minSize=(30, 30),
flags=cv2.cv.CV_HAAR_SCALE_IMAGE)

max_area=0

Il
O

largest_x

Il
(@)

largest_y

Rectangle around the faces
for (x, y, w, h) in faces:
area = w*h
if area>max_area:
max_area = area
largest_x = x + w/2

largest_y = y + h/2

res=np.int_([len(faces) ,max_area*100/(capture.get (3)*capture.get(4)),largest_

return res

x*100/ cap

Anexos

92

ANEXO A - DESCRICAO DAS
MENSAGENS ENVIADAS E
RECEBIDAS PELO LEGO
MINDSTORMS EV3

Tabela 3: Descrigao dos bits mais significativos do byte de mensagem. Reproduzido de
(KOHLER, 2015).

XX | Descricao

00 | Mensagem de sistema (tipo 1)

01 | Mensagem de comando (tipo 2)
10 | Mensagem de informacao (tipo 3)
11 | Mensagem de dados (tipo 4)

Tabela 4: Descrigdo das mensagens de sistema. Reproduzido de (KOHLER, 2015).

Byte Descricao
0b00000000 | SYNC
0b00000010 | NACK
0b00000100 | ACK
0bOOLLL110 | ESC

Tabela 5: Descrigao das mensagens de comando. Reproduzido de (KOHLER, 2015).

Byte Payload | Descricao

TIPO: tipo do sensor
001000000 | T T ¢ o tipo do sensor (nimero entre 0 e 255)

MODOS: modos do sensor
0b01001001 | M,V M+1 e o nimero de modos suportados (entre 1 e 8)
V+1 é o nimero de modos a serem mostrados (entre 1 e M)

VELOCIDADE: maxima taxa de transmissao
SSSS é a maxima taxa de transmissao suportada pelo sensor

0b01010010 | SSSS

SELECAQO: muda o modo do sensor

0b01000011 | M M especifica o modo do sensor desejado

ESCRITA: envio de dados para o sensor

0b01LLL100 | <dados> <dados> consiste de 2°°FEL bytes

ANEXO A. Descri¢ao das mensagens enviadas e recebidas pelo LEGO MINDSTORMS EV3 93

Tabela 6: Descricao das mensagens de informagao. Reproduzido de (KOHLER, 2015).

Mensagem Info | Payload | Descricao

. NOME: nome do modo 0bMMM
ObIOLLLMMM | 0 <string> <string> é uma string ASCII de tamanho 20111

VALBRUTO: gama de leituras brutas do sensor
0Ob10011MMM |1 LLLL LLLL é o menor valor bruto
HHHH HHHH é o maior valor bruto

PCT: gama de leituras em porcentagem
0b10011MMM | 2 LLLL LLLL é o valor % correspondente ao menor valor bruto
HHHH HHHH é o valor % correspondente ao maior valor bruto

SI: gama de leituras no SI
0b10011MMM | 3 LLLL LLLL é o valor SI correspondente ao menor valor bruto
HHHH HHHH é o valor SI correspondente ao maior valor bruto

. SIMBOLO: nome da unidade no SI
ObIOLLLMMM | 4 <string> <string> é uma string ASCII de tamanho 20°1LE

FORMATO: formato dos dados do sensor no modo
0bMMM

S: nimero de itens (no minimo 1)

T: tipo de dado dos itens (8, 16 ou 32)

F: ntimero de digitos a mostrar (0-15)

D: nimero de decimais a mostrar (0-15)

0b10010MMM | 0x80 | S, T,F,D

Tabela 7: Descri¢ao das mensagens de dados. Reproduzido de (KOHLER, 2015).

Mensagem Payload | Descricao

DADOS: dados do sensor

Obl1LLLMMM | <dados> | <dados> contém as leituras brutas do sensor no modo
ObMMM de tamanho 20°FEE

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Sumário
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Introdução
	Tema
	Justificativa da Escolha do Tema
	Estrutura do Trabalho

	Estado da Arte
	LEGO MINDSTORMS
	Visão Computacional na Robótica
	Visão Computacional e o kit da LEGO MINDSTORMS

	Requisitos do projeto
	Requisitos funcionais
	Requisitos não funcionais
	Requisitos do produto
	Requisitos organizacionais

	Análise e Design
	Arquitetura
	LEGO MINDSTORMS EV3
	Modulo de Visão
	Microcomputador
	Câmera
	Cabeamento
	Invólucro

	Metodologia
	Bloco EV3
	Protocolo de comunicação
	Programação do microcomputador
	Estrutura do Programa
	Execução no Boot (Edison)

	Glue Logic

	Resultados
	Conclusão
	Sugestões para trabalhos futuros

	Referências
	Apêndices
	Desenhos de fabricação eletrônica da placa de circuito Glue Logic
	Arquivos do bloco EVision.ev3b
	/EVision/
	/EVision/blocks.xml

	/EVision/VIs/
	/EVision/VIs/PBR/EVColor.vix
	/EVision/VIs/PBR/EVShape.vix
	/EVision/VIs/PBR/EVFace.vix

	/EVision/strings/
	/EVision/strings/en-US/blocks.xml
	/EVision/strings/en-US/images/Identification_SetOfColors.xml
	/EVision/strings/en-US/images/Identification_SetOfShapes.xml
	/EVision/strings/pt/blocks.xml
	/EVision/strings/pt/images/Identification_SetOfColors.xml
	/EVision/strings/pt/images/Identification_SetOfShapes.xml

	/EVision/images/
	/EVision/images/Identification_SetOfColors.xml
	/EVision/images/Identification_SetOfShapes.xml

	/EVision/help/
	/EVision/help/en-US/EVisionSensor.html
	/EVision/help/pt/EVisionSensor.html

	Desenhos de fabricação do involucro
	Programação (Python)
	protocol.py
	colortracking.py
	shapetracking.py
	facetracking.py

	Anexos
	Descrição das mensagens enviadas e recebidas pelo LEGO MINDSTORMS EV3

