
AMANDA VIEIRA FERNANDES

RENAN RICARDO MARCHETTO

Módulo de visão integrado ao kit da LEGO

MINDSTORMS EV3

São Paulo

2015

AMANDA VIEIRA FERNANDES
RENAN RICARDO MARCHETTO

Módulo de visão integrado ao kit da LEGO

MINDSTORMS EV3

Texto apresentado à Escola Politécnica da
Universidade de São Paulo como requisito
para a conclusão do curso de graduação em
Engenharia Mecatrônica, junto ao Departa-
mento de Engenharia Mecatrônica e de Siste-
mas Mecânicos (PMR)

Orientador: Prof. Dr. Thiago de Castro Martins

São Paulo

2015

Este relatório é apresentado como requisito parcial para obtenção do

grau de Engenharia Mecatrônica na Escola Politécnica da Universidade

de São Paulo. É o produto do nosso próprio trabalho, exceto onde

indicado no texto. O relatório pode ser livremente copiado e distribúıdo

desde que a fonte seja citada.

FICHA CATALOGRÁFICA

Vieira Fernandes, Amanda; Marchetto, Renan Ricardo.
Módulo de visão integrado ao kit da LEGO MINDSTORMS EV3 / Vieira Fernandes,
Amanda; Marchetto, Renan Ricardo.. – São Paulo, 2015- 93 p.

Monografia – Escola Politécnica da Universidade de São Paulo. Departamento de
Engenharia Mecatrônica e de Sistemas Mecânicos (PMR), 2015.

1. LEGO MINDSTORMS EV3. 2. Intel Edison. 3. Visão Computacional. I.
Prof. Dr. Thiago de Castro Martins. II. Universidade de São Paulo. III. Escola
Politécnica. IV. Módulo de visão integrado ao kit da LEGO MINDSTORMS EV3

AGRADECIMENTOS

Considerando essa monografia como o resultado de uma caminhada que não começou na

Escola Politécnica, agradecer pode não ser uma tarefa nem fácil, nem justa. Para não

corrermos o risco da injustiça, agradecemos de antemão a todos que, de alguma forma,

passaram pelas nossas vidas e contribúıram para a construção de quem somos hoje.

Gostaŕıamos de agradecer, em especial, algumas pessoas pela contribuição direta

na construção deste trabalho:

Ao nosso orientador Prof. Dr. Thiago de Castro Martins, pelo est́ımulo acadêmico,

pela orientação constante, pelas contribuições teóricas e, principalmente, por nos mostrar

na prática que podemos nos superar a cada dia.

Ao Prof. Nilson Noris Francischetti, pelo suporte eletrônico oferecido nos momentos

de maior necessidade.

Ao Laboratório de Véıculos Não Tripulados, pelo empréstimo do ı́tem mais valioso

desse projeto: o analisador lógico.

Ao Peter Thesbjerg e Per Christoffersen, Diretor Sênior de Marketing e Engenheiro

Sênior de Pesquisa e Desenvolvimento Eletrônicos do Grupo LEGO de Billund, pela

disponibilidade e atenção durante a nossa visita, pelo interesse acadêmico no nosso

projeto e pela inspiração da criação de uma ferramenta tão interessante quanto o LEGO

MINDSTORMS.

Aos professores e amigos da Escola Politécnica da Universidade de São Paulo, pelo

incentivo e inspiração que nos ofereceram durante este e tantos outros trabalhos ao longo

desses 6 anos.

Aos amigos que, mesmo não estando presentes no nosso dia-a-dia, nos deram força

e foco para continuar avançando.

Aos nossos irmãos e pais, pelo carinho e apoio durante os momentos mais dif́ıceis e

pela comemoração a cada pequena vitória alcançada.

RESUMO

Em 1998 o Grupo LEGO, em parceria com o MIT, criou o primeiro kit de robótica para

crianças: o RCX. Desde então, com o desenvolvimento da tecnologia, o produto vem sendo

amplamente utilizado em cursos de graduação, especialmente de mecatrônica, computação

e eletrônica. Além do bloco programável, o kit contém diversos tipos de sensores: toque,

luz, ultrassom, infravermelho, entre outros. Eles fazem do produto uma excelente ferra-

menta robótica, permitindo a construção de projetos bastante complexos. Entretanto, até

então, o kit não possui oficialmente um sensor de visão, o que permitiria aos usuários a

criação de robôs ainda mais eficazes e complexos. O projeto tem como objetivo final o

desenvolvimento de um módulo de visão integrado ao kit da terceira geração da LEGO

MINDSTORMS. Para tal finalidade, ambos hardware e software serão desenvolvidos de

modo que uma câmera possa captar o ambiente através de fotos e/ou v́ıdeos, estas imagens

sejam processadas por um microcomputador embarcado ao módulo que enviará ao bloco

inteligente EV3 da LEGO um conjunto de informações pós-processadas que serão, então,

integradas à programação de blocos própria ao produto. Envolto em um invólucro corres-

pondente aos padrões de encaixe da LEGO, o módulo seria uma ferramenta reprogramável

de processamento de imagens em tempo real completamente integrável ao kit, permitindo

tanto uma utilização simplificada das funções pré-programadas na linguagem de blocos,

quanto uma programação personalizada de diferentes funções segundo as necessidades do

usuário.

Palavras-chave: LEGO MINDSTORMS EV3. Intel Edison. Visão Computacional.

ABSTRACT

In 1998 the LEGO Group, in partnership with the MIT, created the first robotic kit for

children: the RCX. Ever since, with the development of this tecnology, the product has

been widely used in undergraduate courses, especially mechatronics, computer science and

electronics. In addition to the programmable brick, the kit contains a variety of sensors:

touch, light, ultrasound, infrared and others. They make the product an excellent robotics

tool, allowing the construction of very complex projects. However, the kit does not offitially

have a vision sensor which would allow users to create even more effective and complex

robots. The project’s ultimate goal is the development of a vision module integrated with

the LEGO MINDSTORMS third generation kit. For this purpose, both hardware and

software will be developed so that the camera can capture its environment through photos

and/or videos, these images being processed by a microcomputer embedded to the module

that will send to the EV3 a set of post-processed data that will be then integrated into

the LEGO’s icon-based programming software. The module will be wrapped in a LEGO

matching casing and it would be then a reprogrammable tool for real-time image process-

ing completely integrated to the kit, allowing both simplified use of the pre-programmed

functions and custom programming different functions according to users needs.

Key-words: LEGO MINDSTORMS EV3. Intel Edison. Computational vision.

SUMÁRIO

1 INTRODUÇÃO . 13

1.1 Tema . 13

1.2 Justificativa da Escolha do Tema 13

1.3 Estrutura do Trabalho . 13

2 ESTADO DA ARTE . 15

2.1 LEGO MINDSTORMS . 15

2.2 Visão Computacional na Robótica 17

2.3 Visão Computacional e o kit da LEGO MINDSTORMS 18

3 REQUISITOS DO PROJETO 21

3.1 Requisitos funcionais . 21

3.2 Requisitos não funcionais . 22

3.2.1 Requisitos do produto . 22

3.2.2 Requisitos organizacionais . 22

4 ANÁLISE E DESIGN . 23

4.1 Arquitetura . 23

4.2 LEGO MINDSTORMS EV3 . 24

4.3 Modulo de Visão . 25

4.3.1 Microcomputador . 25

4.3.2 Câmera . 27

4.3.3 Cabeamento . 27

4.3.4 Invólucro . 28

5 METODOLOGIA . 29

5.1 Bloco EV3 . 29

5.2 Protocolo de comunicação . 32

5.3 Programação do microcomputador 37

5.3.1 Estrutura do Programa . 38

5.3.2 Execução no Boot (Edison) . 44

5.4 Glue Logic . 47

6 RESULTADOS . 50

7 CONCLUSÃO . 54

7.1 Sugestões para trabalhos futuros 54

REFERÊNCIAS . 56

APÊNDICES 59

APÊNDICE A – DESENHOS DE FABRICAÇÃO ELETRÔNICA

DA PLACA DE CIRCUITO GLUE LOGIC 60

APÊNDICE B – ARQUIVOS DO BLOCO EVISION.EV3B . 63

B.1 /EVision/ . 63

B.1.1 /EVision/blocks.xml . 63

B.2 /EVision/VIs/ . 66

B.2.1 /EVision/VIs/PBR/EVColor.vix . 66

B.2.2 /EVision/VIs/PBR/EVShape.vix . 67

B.2.3 /EVision/VIs/PBR/EVFace.vix . 68

B.3 /EVision/strings/ . 68

B.3.1 /EVision/strings/en-US/blocks.xml . 68

B.3.2 /EVision/strings/en-US/images/Identification SetOfColors.xml 70

B.3.3 /EVision/strings/en-US/images/Identification SetOfShapes.xml 71

B.3.4 /EVision/strings/pt/blocks.xml . 71

B.3.5 /EVision/strings/pt/images/Identification SetOfColors.xml 73

B.3.6 /EVision/strings/pt/images/Identification SetOfShapes.xml 73

B.4 /EVision/images/ . 74

B.4.1 /EVision/images/Identification SetOfColors.xml 75

B.4.2 /EVision/images/Identification SetOfShapes.xml 75

B.5 /EVision/help/ . 75

B.5.1 /EVision/help/en-US/EVisionSensor.html 76

B.5.2 /EVision/help/pt/EVisionSensor.html 77

APÊNDICE C – DESENHOS DE FABRICAÇÃO DO INVO-

LUCRO . 80

APÊNDICE D – PROGRAMAÇÃO (PYTHON) 82

D.0.3 protocol.py . 82

D.0.4 colortracking.py . 85

D.0.5 shapetracking.py . 87

D.0.6 facetracking.py . 89

ANEXOS 91

ANEXO A – DESCRIÇÃO DAS MENSAGENS ENVIADAS

E RECEBIDAS PELO LEGO MINDSTORMS

EV3 . 92

LISTA DE ILUSTRAÇÕES

Figura 1 – As três gerações dos blocos inteligentes do kit. 15

Figura 2 – Evolução dos sensores da primeira, segunda e terceira gerações, respec-

tivamente. 16

Figura 3 – NXTCam . 20

Figura 4 – Arquitetura proposta do módulo de visão para LEGO MINDSTORMS

EV3 . 23

Figura 5 – Ambiente de programação da LEGO MINDSTORMS EV3. 25

Figura 6 – Esboço do invólucro. 28

Figura 7 – Árvore de diretórios de um bloco . 29

Figura 8 – Representação em blocos do módulo de visão. 30

Figura 9 – Representação em blocos dos modos de identificação de cores, formas e

faces, respectivamente. 31

Figura 10 – Configuração do conector implementado nas portas de entrada do EV3 32

Figura 11 – Protocolo de comunicação entre o EV3 e o sensor digital. 35

Figura 12 – Esquema de arquivos em Python. 38

Figura 13 – Esquema UML do programa. 38

Figura 14 – Troca de informações entre os processos. 46

Figura 15 – Resultado esperado com a adição do circuito de Glue Logic. 47

Figura 16 – Circuito e Tabela da Verdade do flip-flop de NAND 48

Figura 17 – Valores lógicos do flip-flop ao longo do tempo. 48

Figura 18 – Validação da integração do módulo de visão. 52

Figura 19 – Exemplo de programação integrada aos outros blocos da LEGO. 53

LISTA DE TABELAS

Tabela 1 – Sequência de autoidentificação nas conexões de entrada 33

Tabela 2 – Lista de componentes da placa de circuito Glue Logic. 60

Tabela 3 – Descrição dos bits mais significativos do byte de mensagem. 92

Tabela 4 – Descrição das mensagens de sistema 92

Tabela 5 – Descrição das mensagens de comando 92

Tabela 6 – Descrição das mensagens de informação 93

Tabela 7 – Descrição das mensagens de dados . 93

LISTA DE ABREVIATURAS E SIGLAS

EPUSP Escola Politécnica da Universidade de São Paulo

MIT Instituto de Tecnologia de Massachusetts

RCX Robotic Command Explorer

NXT Segunda geração do LEGO MINDSTORMS

EV3 Terceira geração do LEGO MINDSTORMS

MCL Localização de Monte Carlo

MSRS Microsoft Robotics Studio

HOG Histograma de Gradientes Orientados

AMDF Função da Média de Diferenças de Amplitudes

I2C Inter-Integrated Circuit

UART Universal Asynchronous Receiver/Transmitter

SPI Serial Peripheral Interface

I2S Integrated Inter-IC Sound

PWM Pulse-Width Modulation

OTG On The Go

UVC USB Video Class

GPS Global Positioning System

PCB Placa de Circuito Impresso

SI Sistema Internacional de Medidas

13

1 INTRODUÇÃO

1.1 Tema

O projeto visa o prospecto, o desenvolvimento e a construção de um módulo de visão

reprogramável integrado ao kit LEGO MINDSTORMS EV31.

1.2 Justificativa da Escolha do Tema

Um dos pilares da atuação profissional em mecatrônica é a programação. O processo de

aprendizado dos conceitos iniciais da programação é complexo e marcado pela presença

de inúmeras dificuldades. Alguns dos pontos mais destacados são: a baixa capacidade de

resolução de problemas aliada a eqúıvocos na formulação de modelos mentais adequados; a

falta de motivação para executar tarefas; a dificuldade para tratar abstração, ferramentas

e linguagens não adaptadas pedagogicamente; entre outros.

A LEGO apresenta um kit de desenvolvimento otimizado que segue os mais

recentes desenvolvimentos de software intuitivo de fácil utilização para iniciantes. É neste

contexto que o produto começou a ser utilizado em salas de aula de cursos de graduação,

especialmente nos domı́nios da computação, eletrônica, mecatrônica e robótica. A Escola

Politécnica da Universidade de São Paulo (EPUSP) não foi exceção: em 2009, a escola

começou a oferecer cursos extra-curriculares para os calouros interessados em aplicar os

conceitos de programação aprendidos no curso regular utilizando o kit(PET. . . , 2015).

Pessoalmente para os alunos envolvidos neste projeto, que participaram do curso

como calouros para, em seguida, se tornarem monitores do mesmo, a motivação para o

desenvolvimento deste projeto provem da proximidade dos mesmos com o kit. Apesar

das ferramentas existentes no produto serem, por si só, muito potentes, a adição de um

módulo de visão ao produto seria um avanço importante para as criações robóticas.

1.3 Estrutura do Trabalho

Este relatório será estruturado da seguinte forma: primeiramente, será apresentado o

estado da arte do domı́nio de visão computacional em robótica e, mais especificamente,

das tecnologias integradas a todas as gerações do kit da LEGO MINDSTORMS.

1 Os nomes LEGO R©, MINDSTORMS R©, NXT e EV3 são marcas registradas do LEGO Group. Seu uso
neste texto não implica em aval por parte do LEGO Group ao seu conteúdo.

Caṕıtulo 1. Introdução 14

Em seguida, os requisitos funcionais e não funcionais do projeto serão detalha-

damente especificados. A posteriori, a arquitetura será definida e os seus componentes

principais serão apresentados.

Finalmente, a metodologia utilizada será descrita de forma a exemplificar os proces-

sos necessários para a realização do projeto para, então, os resultados serem apresentados

seguidos por uma conclusão sobre os mesmos com sugestões para trabalhos futuros.

15

2 ESTADO DA ARTE

2.1 LEGO MINDSTORMS

O Grupo LEGO é uma companhia privada, cuja matriz encontra-se em Billund, na

Dinamarca. Fundado em 1932 por Ole Kirk Kristiansen, o grupo é um dos ĺıderes mundiais

em fabricação de jogos infantis. O produto mais importante do grupo é o bloco LEGO,

e o prinćıpio de encaixe com tubos o torna único, oferecendo infinitas possibilidades de

construção (MORTENSEN, 2012).

Há 35 anos, o grupo criou uma divisão especial voltada à educação: a LEGO

Education. A companhia trabalha em conjunto com professores e especialistas em educação

para proporcionar soluções e recursos que serão utilizados dentro da sala de aula para

fazer o aprendizado mais divertido. A mesma inspira interesse em diversas áreas, tais

quais Ciência, Tecnologia, Engenharia, Ciência da Computação, Matemática e Ciências

Humanas (EDUCATION, 2015).

Em 1988, a partir de uma colaboração entre o Grupo LEGO e o Instituto de

Tecnologia de Massachusetts (MIT), desenvolveu-se um “bloco inteligente”, o qual seria

capaz de trazer as criações em blocos LEGO à vida via programação computacional. O kit,

conhecido como LEGO MINDSTORMS , foi oficialmente introduzido no mercado em 1998

e consiste de um conjunto de peças da linha tradicional acrescido de atuadores, sensores e

de um processador programável: o módulo RCX (Robotic Command Explorer). Até os

dias atuais, existem três gerações de kits: o RCX, o NXT e o EV3 (LEGO, 2013c).

Todos os módulos programáveis contêm: portas de sáıda, identificadas por letras,

que servem para conectar os atuadores do robô; portas de entrada, identificadas por

números, que servem para conectar os diversos sensores; tela LCD com informações

variadas como valores de leitura dos sensores e programas selecionados; e botões do painel

utilizados para seleção do programa, ligar/desligar o bloco, executar a programação, entre

outros.

Figura 1: As três gerações dos blocos inteligentes do kit. Reproduzido de (VALK, 2013)

Caṕıtulo 2. Estado da Arte 16

Figura 2: Evolução dos sensores da primeira, segunda e terceira gerações, respectivamente2.

A cada geração, o kit passou por diversas alterações. No que diz respeito ao bloco

programável, enquanto o RCX poderia conter no máximo 5 programas e comunicar-se via

torre infravermelha (CAPRANI, 2006), o NXT permitia o armazenamento de diversos

arquivos em sua memória além de comunicação Bluetooth e USB (LEGO, 2006). Já na

terceira geração, o EV3 possui, além dos recursos da geração anterior, comunicação wi-fi,

memória interna de 16MB e uma entrada para cartões micro-SD (LEGO, 2013f).

De maneira análoga, os sensores evolúıram muito com o passar do tempo: a primeira

geração possúıa sensores de luz, rotação, temperatura e toque (CAPRANI, 2006); a segunda

toque, cor, som e ultrassom (seus motores já são equipados com sensores de rotação)

(LEGO, 2006); e a terceira possui sensores de cor, toque e infravermelho (LEGO, 2013f).

A última geração do kit permite, também, a utilização de todos os sensores fabricados

para a geração anterior a ele.

Atualmente, além dos sensores oficiais comercializados pela LEGO , existem di-

versas empresas cujo foco é o desenvolvimento de sensores adicionais para os kits da

LEGO MINDSTORMS NXT e EV3. Pode-se destacar, por exemplo, as empresas ameri-

canas HiTechnic (HITECHNIC, 2001-2012), Dexter Industries (INDUSTRIES, 2015) e

Mindsensors.com (MINDSENSORS.COM, 2005-2015), que fabricam sensores de pressão,

de aceleração, de voltagem e de corrente, pneumáticos, magnéticos, entre outros, todos

compat́ıveis com ambos blocos NXT e EV3.

Em estudos recentes, os kits da LEGO MINDSTORMS vêm sendo usados com

êxito em cursos de graduação em engenharia mecatrônica, elétrica e computação em vista

de sua plenitude operacional: além de possuir uma programação simples e completa, o

mesmo possui quase todos os sensores fundamentais de robótica. O conjunto fornece uma

2 Adaptado de (CAPRANI, 2006), (LEGO, 2006) e (LEGO, 2013f).

Caṕıtulo 2. Estado da Arte 17

poderosa ferramenta para os alunos de graduação na área, que podem facilmente prototipar

uma solução robótica de qualidade para a materialização dos seus projetos.

2.2 Visão Computacional na Robótica

Um dos pilares da robótica baseia-se na localização de objetos no espaço e no referenci-

amento destes aos robôs. Assim, o desenvolvimento de algoritmos de localização são de

extrema importância na área. É o caso da Localização de Monte Carlo (MCL), algoritmo

probabiĺıstico de localização global baseado nos conceitos de cadeia de Markov que repre-

senta as distribuições posteriores da posição do robô através de uma coleção aleatória de

part́ıculas ponderadas que se aproximam da distribuição desejada (AD; BURGARDC;

DELLAERTA, 2000). Existe ainda a dependência em relação à visão, que apresenta um

papel importante para a localização no espaço de um objeto. O processamento de imagem

fornece os parâmetros necessários com os quais o robô pode se basear para tomar suas

decisões, assim a identificação e o rastreamento de objetos se tornam um objetivo para a

robótica. Um método simples, desenvolvido por DAS et al., utiliza-se da segmentação de

imagens com o objetivo de capturá-las e determinar a cor de um alvo base. Neste trabalho,

o alvo é escolhido e pré-determinado assim como sua cor, não tendo, portanto, inteligência

ou liberdade para identificação de objetos aleatórios.

A localização de objetos pode ser feita de maneira mais eficaz utilizando-se da

captura de imagem 3D (ŠULIGOJ et al., 2013). Inicia-se o sistema de visão capturando

uma imagem 2D. A imagem é processada com o objetivo de encontrar os marcadores

(referências). As coordenadas em 2D dos pixels destes marcadores são usadas para extrair

uma imagem 3D, permitindo assim uma maior flexibilidade ao robô. Outros métodos

para navegação foram desenvolvidos, como o descrito em (DAVISONA; KITAB, 2001),

que realiza o mapeamento sequencial (utilizado na localização e mapeamento rápido e

sucessivo) para aplicações em tempo real.

Paralelamente a estes estudos, desenvolveram-se também novas ferramentas que

facilitam a captura e interpretação dos dados de uma câmera. Assim não é necessário

domı́nio no campo da visão computacional ou da robótica para desenvolver um projeto.

É o caso do Eyepatch (MAYNES-AMINZADE; WINOGRAD, 2007), uma ferramenta

simplificada para extrair informações úteis de uma imagem voltada para programadores

iniciantes, ou também do Microsoft Robotics Studio (MSRS) (TRUNG; AFZULPURKAR;

BODHALE, 2009) assim como dos toolkits AForge.NET, MATLAB e OpenCV. Um

exemplo de um robô inteligente seria o RHINO (BUHMANN et al., 1995), uma plataforma

robótica móvel equipada com 24 sensores de distância do tipo sonar, uma câmera dual-color

e 2 computadores embarcados. Ele opera com autonomia e é capaz de aprender com o

ambiente, devido a um software inteligente e em tempo real, gerando caminhos com custo

Caṕıtulo 2. Estado da Arte 18

mı́nimo.

As diversas pesquisas feitas no campo da robótica envolvendo visão computacional

servem de base nesse projeto para futuras releituras, podendo ser então aplicadas como

parte da solução do desenvolvimento do módulo de visão proposto.

2.3 Visão Computacional e o kit da LEGO MINDSTORMS

Desde a primeira geração do LEGO MINDSTORMS , a possibilidade de criar um módulo

de visão que permitisse aos robôs ver o ambiente no qual eles se situam já era uma

preocupação. De fato, já na primeira geração, a LEGO desenvolveu um sistema de visão

integrável ao kit da LEGO MINDSTORMS : o Mindstorms Vision Command (GASPARI,

2001).

O sistema é composto por uma câmera Logiteck QuickCam embalada por um

bloco especial equipado com encaixes compat́ıveis com os da LEGO . O módulo em si

não necessita do RCX para funcionar: seu software de reconhecimento pode ser utilizado

para ativar o PC ligado a este e produzir sons, capturar fotos e até mesmo v́ıdeos. A

comunicação com o RCX é feita através da torre infravermelha.

O programa do Vision Command envia ao RCX um pequeno programa que contém

todas as instruções para cada evento. A partir dáı, o sistema envia apenas o número

referente ao evento ocorrido. Desta forma, as entradas para sensores do RCX não são

usadas pelo Vision Command e o RCX não pode ser programado independentemente do

Vision Command de maneira simples. Pesquisas começaram a serem feitas de modo a

aperfeiçoar esse módulo de visão ou desenvolver um novo conceito.

A integração do kit com uma torre infravermelha, uma webcam e um computador

permitiu o processamento de imagens visando a solução dos problemas de rúıdos dos dados

(pré-processamento com filtros Gaussianos e detectores de arestas de Canny) antes da

aplicação dos algoritmos de tratamento da imagem (representados por uma máquina de

estados) para controle da visão do robô (STEVENSON; SCHWARZMEIER, 2007), uma

solução ainda primitiva que foi se renovando e se desenvolvendo com o crescimento da

popularidade dos kits e a evolução dos mesmos.

Já na segunda geração do kit, as pesquisas nesta área se intensificaram e diversas

soluções para o problema foram desenvolvidas. Demirci et al. (2013) exploram o proces-

samento de imagens de uma câmera por um computador e o envio, através do Módulo

de Comunicação por Bluetooth, das informações obtidas pelo PC para o NXT. Estas

informações serão utilizadas então pelo robô na escolha do evento a ser realizado.

Neste, o processamento das imagens é feito em duas etapas: primeiro implementa-

se algoritmo do Histograma de Gradientes Orientados (HOG - Histogram of Oriented

Caṕıtulo 2. Estado da Arte 19

Gradients) para fazer a detecção de formas; em seguida é aplicada a Função da Média

de Diferenças de Amplitudes (AMDF - Average Magnitude Difference Function) a fim

de classificar os resultados obtidos anteriormente. Estes módulos combinados fornecem

um método invariante de escala e orientação. Sua implementação é feita no ambiente

MATLAB para então ser integrado ao RWTH, ferramenta utilizada para a programação e

o controle remoto dos dispositivos da LEGO NXT por Bluetooth.

TRUNG; AFZULPURKAR; BODHALE propõem a utilização de uma webcam para

fazer o reconhecimento de sinais de trânsito para controlar um robô LEGO MINDSTORMS

. A solução utiliza o MSRS, um ambiente de criação de aplicações robóticas para Windows

que contribui na confiabilidade e no paralelismo dos componentes em um sistema distribúıdo.

Desta forma, coordenam-se três sistemas diferentes: a webcam para o reconhecimento

das placas; o sensor de luz para a navegação do tipo “seguidor de linha”; e o sensor de

ultrassom para a detecção dos sinais de trânsito.

Em Zhenjun, Nisar e Malik (2014), a visão computacional é aplicada ao problema

de navegação interior. O sistema proposto é composto não mais por uma câmera, mas por

um dispositivo Android conectado via wi-fi a um computador, o qual se conecta ao LEGO

MINDSTORMS NXT via Bluetooth.

Desta forma, o computador age como o centro de comando para receber as in-

formações do Android e do NXT para, em seguida, enviar-lhes instruções processadas a

partir dos dados recebidos. Os algoritmos implementados pelo PC são a Localização pelo

Método de Monte Carlo e o Algoritmo A* do Menor Caminho. Já o dispositivo Android

implementa o algoritmo ORB de detecção de objetos no qual uma referência pré-definida

é dispońıvel no banco de dados do dispositivo. O NXT reage, portanto, passivamente aos

comandos recebidos do computador.

Kirillov (2008) desenvolveu uma câmera pan-tilt (ou seja com dois graus de liberdade:

pitch e yaw) com uma webcam comum, um PC e peças de LEGO . Utiliza-se o framework

AForge.NET (toolkit usado principalmente para o reconhecimento de imagens básicas

(KIRILLOV, 2010)) para o processamento de imagens. Neste, foram também desenvolvidos

algoritmos de movimentação manual e automático dos ângulos da câmera para a tarefa de

rastreamento de objetos.

Todas as soluções listadas até então possuem uma caracteŕıstica em comum: todas

se servem de um computador, o qual se encarrega de fazer o processamento das imagens.

Em geral, esta solução tende a oferecer algumas limitações ligadas, por exemplo, ao sistema

de comunicação entre a câmera e o computador (no caso da utilização de cabos USB) e à

compatibilidade com os outros sensores.

É neste cenário que nasce a NXTCAM (MORAL, 2008, pag. 47): um sistema de

visão próprio para os robôs da LEGO MINDSTORMS NXT e EV3. Baseado na AVRCam

Caṕıtulo 2. Estado da Arte 20

(ORLANDO, 2004), o sistema tem a capacidade de processar imagens em tempo real e de

detectar e seguir até oito objetos coloridos. O módulo se conecta diretamente à porta de

sensores do bloco inteligente. Uma vez conectada, a NXTCam é completamente autônoma

e, portanto, não necessita se conectar a um computador. As informações pós-processadas

que são enviadas ao bloco da LEGO contém estat́ısticas do objeto: quantidade, cor,

coordenadas dos limites do objeto ou de segmentos (MORAL, 2008, pag. 59).

Figura 3: NXTCam3.

O sistema pode ser conectado a um PC através de um

cabo USB e, após a instalação do software de visualização e

de configuração, é posśıvel visualizar a imagem no computa-

dor. Este software serve também para configurar os Mapas de

Cores para o processamento a bordo. Os objetos de interesse

são reconhecidos através da comparação dos valores de cor

armazenados com a imagem capturada, o que significa que

estes objetos precisam ser gravados na memória do sistema. O

módulo pode, portanto, guardar 8 Mapas de Cores e prover as

informações processadas referentes aos objetos correspondentes

a estes mapas.

Existem diversas aplicações já desenvolvidas que utili-

zam a NXTCam: desde as tarefas mais básicas como reconheci-

mento e seguimento de objetos até robôs que jogam ping-pong,

connect four e de navegação autônoma.

3 Reproduzido de (MINDSENSORS, 2014)

21

3 REQUISITOS DO PROJETO

Os requisitos do sistema a ser desenvolvido devem levar em consideração tanto a estrutura

f́ısica (hardware) quanto a estrutura computacional (software) necessárias para que o bloco

programável EV3 possa receber e interpretar as informações da câmera pré-tratadas pelo

módulo de visão proposto.

3.1 Requisitos funcionais

O usuário, ao adquirir o módulo, deve ser capaz de:

• Conectar o produto diretamente às portas de entrada do EV3 utilizando o mesmo

cabeamento dos sensores oficiais da LEGO;

• Utilizar o software de programação em blocos da LEGO (ICON-BASED SOFT-

WARE) para importar o bloco de funcionalidades do módulo criado neste projeto;

• Acessar informações fornecidas pelas diversas funções do bloco do módulo de visão

para programar uma criação robótica que reaja aos dados obtidos pela funcionalidade

escolhida;

• Reprogramar o módulo, criando funções diferenciadas daquelas criadas neste projeto.

Já o módulo deve, de forma automática, ser capaz de:

• Autoidentificar-se quando conectado ao EV3;

• Conectar-se a uma câmera embarcada e recolher informações da mesma;

• Fazer o tratamento das imagens obtidas pela câmera em tempo real de forma a

sintetizar as informações contidas na mesma;

• Enviar ao EV3 as informações concernentes à funcionalidade selecionada pelo usuário;

• Identificar a troca de função requisitada pelo usuário e reagir de maneira apropriada

à demanda.

As funcionalidades de base do módulo, ou seja, as funções desenvolvidas no âmbito

deste projeto, são listadas abaixo:

1. Cores: identificação de objetos nas cores vermelha, azul e verde, posicionamento e

tamanho do maior objeto nas respectivas cores;

Caṕıtulo 3. Requisitos do projeto 22

2. Formas bases: identificação de objetos nas formas circulares, retangulares e triangu-

lares, posicionamento e tamanho do maior objeto nas respectivas formas;

3. Faces: reconhecimento de faces, posicionamento e tamanho da maior face encontrada;

3.2 Requisitos não funcionais

3.2.1 Requisitos do produto

No que diz respeito aos aspectos não funcionais do módulo, o mesmo deve possuir as

seguintes caracteŕısticas:

• Por se tratar de um módulo a ser embarcado no robô, ele deve ser o menor e o mais

leve posśıvel a fim de não interferir na movimentação do mesmo;

• Como os usuários finais dos produtos da LEGO MINDSTORMS são majoritariamente

crianças e adolescentes, a sua concepção deve ser pensada de modo a ser resistente,

robusta e simplificada;

• Como o mesmo deve ser integrado às criações robóticas em peças LEGO, o invólucro

do módulo deve seguir os padrões dos demais sensores.

3.2.2 Requisitos organizacionais

Os requisitos organizacionais do sistema consistem em:

• Entregar o protótipo no fim do ano letivo de 2015 para que este possa ser avaliado

por uma banca como Tabalho de Conclusão de Curso de Engenharia Mecatrônica da

Escola Politécnica a USP (EPUSP);

• O número de funções implementadas deve ser limitado devido ao peŕıodo de dois

semestres do trabalho;

23

4 ANÁLISE E DESIGN

4.1 Arquitetura

Seguinte à descrição detalhada dos objetivos e requisitos do projeto, propõe-se a seguinte

arquitetura: uma câmera se conecta a uma unidade de processamento, responsável por

efetuar o tratamento de imagem em tempo real e o envio das informações recolhidas para o

EV3. Sabe-se de antemão que serão necessários diversos componentes eletrônicos adicionais

para efetuar a comunicação entre os elementos do módulo.

Considerando que a unidade de processamento deve atender aos requisitos de

tamanho, peso, processamento de dados em tempo real e reprogramabilidade, conclui-se

que o mesmo deve ser tão potente quanto um computador, porém portátil. A tecnologia

recomendada para este caso de utilização são os microcomputadores.

De maneira análoga, como a câmera deve atender aos mesmos requisitos f́ısicos

e temporais, pode-se utilizar um módulo de câmera embarcado, do tipo industrial, que

além de pequena é capaz de fornecer imagens numa resolução razoável a uma velocidade

compat́ıvel com sistemas em tempo real.

O esquema desta arquitetura é apresentado na figura 4.

Em resumo, os materiais necessários para o desenvolvimento do projeto são listados

abaixo:

• Um kit LEGO MINDSTORMS EV3;

• Um microcomputador;

Figura 4: Arquitetura proposta do módulo de visão para LEGO MINDSTORMS EV3.
Adaptado de (LEGO, 2013b), (CASEYTHEROBOT, 2014) e (ELECTRO-
NICS123,).

Caṕıtulo 4. Análise e Design 24

• Circuitos eletrônicos para comunicação com o EV3;

• Um módulo de câmera embarcado.

A seguir serão apresentados cada um dos componentes do módulo de visão proposto.

4.2 LEGO MINDSTORMS EV3

O bloco programável EV3 contém (LEGO, 2013d):

• um processador ARM9 de 32 bits configurado com o sistema operacional Linux;

• 64MB de memória RAM e 16MB de memória FLASH;

• interface para cartão micro-SD;

• comunicação Bluetooth; interfaces client e host para comunicação USB;

• 4 portas de entrada com 6 fios de interface suportando tanto interfaces analógicas

quanto digitais;

• 4 portas de sáıda com 6 fios suportando entrada de encoders para motor;

• um display de 178x128 pixels em preto e branco;

• um auto-falante;

• 6 botões de interface com o usuário;

• fonte de alimentação através de 6 pilhas AA ou uma bateria de ĺıtio recarregável;

• conectores de 6 fios do tipo RJ-12 com ajuste do lado direito.

A programação do bloco inteligente é feita através de um software especializado

fornecido pela LEGO. De forma intuitiva, cada elemento é caracterizado por um bloco que

pode ser arrastado e colocado no ambiente de programação. As informações de sáıda de

cada um dos blocos podem ser recuperadas e utilizadas como entrada nos demais blocos.

Os blocos são classificados em 5 categorias diferentes (LEGO, 2013e):

1. Ação: são os blocos que permitem o controle por parte do EV3;

2. Controle de fluxo: são os blocos de controle de tempo e loop de informações;

3. Sensores: são os blocos que fornecem informações ao EV3;

4. Operações: são os blocos de operações matemáticas, como declaração de variáveis,

somas e comparações;

Caṕıtulo 4. Análise e Design 25

Figura 5: Ambiente de programação da LEGO MINDSTORMS EV3.

5. Avançado: são os blocos que não se encaixam em nenhuma das outras categorias,

como os responsáveis pela comunicação Wi-Fi e Bluetooth, por exemplo.

O usuário é ainda capaz de criar blocos personalizados a partir dos blocos já

existentes no programa. Estes são chamados de “My Blocks”, e são utilizados para guardar

segmentos de programas que são repetidamente utilizados em muitos projetos. Um exemplo

de programação no software está apresentado na figura 5.

No âmbito do projeto, a criação de um novo sensor implica na criação de um bloco

de programação correspondente a este novo sensor, que será classificado como um bloco

do tipo “Sensores”.

4.3 Modulo de Visão

4.3.1 Microcomputador

Atualmente, os microcomputadores mais conhecidos no mercado são o Raspberry Pi e

o Intel Edison5. Oferecendo vantagens nos quesitos tamanho, peso e processamento, a

solução da Intel se destaca como sendo a mais recomendada para o projeto.

Suas especificações são listadas abaixo (INTEL, 2015):

• Conector de 70 pinos;

• 35.5 x 25.0 x 3.9 mm de dimensões f́ısicas;

5 O nome Intel R© é marca registrada da Intel Corporation. Seu uso neste texto não implica em aval por
parte da Intel Corporation ao seu conteúdo.

Caṕıtulo 4. Análise e Design 26

• 40 GPIOs as quais podem ser configurados como interface para cartão SD, comu-

nicação UART, comunicação I2C, comunicação SPI, comunicação I2S, controle de

PWM, portas USB com controlador OTG e sáıda de clock;

• Intel SoC de 22nm que inclui uma CPU Intel AtomTM dual-core e dual-thread a 500

MHz e um processador Intel QuarkTM de 32 bits a 100 MHz;

• 1GB de memória RAM e 4GB de memória FLASH;

• Wi-Fi dual-band integrado;

• Bluetooth 4.0;

• Suporte para Yocto Linux, Arduino, Python, Node.js e Wolfram.

A utilização deste microcomputador requer a conexão de placas de expansão ao

mesmo. A Intel possui dois kits de expansão compat́ıveis com o Intel Edison: o Kit Intel

Edison para Arduino e o Kit de Placa de Expansão Intel Edison. Já a Sparkfun apresenta

diversos blocos de expansão para o Intel Edison (CASEYTHEROBOT, 2014). Cada um

deles oferece uma funcionalidade diferente: alimentação, comunicação via console, acesso

às entradas e sáıdas e funções especiais. Os blocos podem então ser empilhados devido à

presença dos conectores de 70 pinos fêmea embaixo da placa.

Considerando que, com os blocos da Sparkfun, é posśıvel obter uma solução

fisicamente pequena e personalizada às necessidades do projeto, optou-se pelos mesmos.

As funcionalidades necessárias ao projeto são: alimentação, comunicação via console, OTG

(On The Go) e UART. A escolha da UART como protocolo de comunicação com o EV3 se

encontra no caṕıtulo 5.

Foram incorporados ao projeto, portanto, os Blocos Sparkfun para Intel Edison

Base e UART. O primeiro possui 2 conectores micro AB USB: o Console e o OTG. Ambos

permitem a energização do Edison. O Console utiliza o FT231x para fornecer uma interface

USB-Serial para acessar o console do Edison. Já o OTG permite a conexão com webcams,

dispositivos de armazenamento ou outros dispositivos USB.

O bloco UART possui uma interface de console simples via um cabo FTDI (com 6

pinos, sendo que os pinos 2 e 3 correspondem aos sinais Tx e Rx, respectivamente). Além

disso, a placa possui uma chave para trocar entre a UART1 e a UART2, sendo a segunda

especialmente configurada para acessar o console do Edison.

Ambas as placas são montadas uma em cima da outra de maneira a minimizar o

espaço utilizado e o Intel Edison se encaixa no bloco superior.

Caṕıtulo 4. Análise e Design 27

4.3.2 Câmera

A escolha da câmera é essencial para o sucesso do projeto. Equipada com um sensor

CMOS VGA para alta qualidade de imagem e baixo consumo de energia, o módulo

de câmera embarcado escolhido provê até 30 fps em qualidade VGA (640x480 pixels)

(ELECTRONICS123,).

A interface com o computador é feita através de um conector USB 2.0 de alta

velocidade. A mesma possui driver UVC (USB Video Class) para uso em máquinas com

sistemas operacionais Linux, Windows XP SP2 ou acima. As dimensões f́ısicas da câmera

são 32 x 32 mm. Sua lente possui distância focal de 3.6 mm e abertura de 1/2.0.

4.3.3 Cabeamento

Tão importante quanto os componentes em si são as conexões entre os mesmos. O esquema

de cabeamento entre os elementos acima apresentados será como apresentado abaixo:

• Alimentação: as placas de expansão da Sparkfun utilizadas no módulo oferecem

três opções para a alimentação do microcomputador, sendo elas através dos pinos

da placa UART, da porta micro USB OTG ou ainda da porta micro USB Console.

Como a primeira solução interfere no bom funcionamento dos outros pinos da UART

e o VCC da porta micro USB OTG está conectado a um diodo zener, o qual provoca

uma queda de tensão, a melhor opção é a alimentação pela porta micro USB Console.

Sendo assim, é necessária a conexão dos fios de energia do conector fêmea da LEGO

aos fios de energia da porta micro USB Console;

• Comunicação UART com o EV3: a comunicação UART utiliza uma linha única de

transmissão de dados (Tx) e outra de recebimento de dados (Rx). O cabeamento

necessário para a implementação dessa comunicação envolve a conexão dos pinos

Tx, Rx e GND do conector fêmea da LEGO aos pinos Tx, Rx e GND da placa de

expansão UART do Edison;

• Comunicação via Console: uma vez que a alimentação do Edison é implementada

através da porta micro USB Console, a conexão direta do usuário ao microcomputador

via console deve ser feita manualmente trocando-se o conector de alimentação pelo

cabo desejado;

• Comunicação USB com a câmera: a conexão da câmera ao Edison será realizada de

maneira direta, onde o conector de 5 pinos da mesma se conecta à porta micro USB

OTG da placa de expansão do Edison.

Caṕıtulo 4. Análise e Design 28

4.3.4 Invólucro

Todos os sensores da terceira geração do LEGO MINDSTORMS possuem o mesmo design:

uma estrutura de plástico, leve e compacta, nas cores cinza escuro e branca, e com encaixe

compat́ıvel com as peças da LEGO no fundo. Assim, o invólucro do módulo de visão a

ser desenvolvido planeja seguir as mesmas diretrizes desses sensores, uma vez que as suas

caracteŕısticas estão alinhadas aos requisitos não funcionais do projeto.

Como a porta micro USB Console é utilizada para a alimentação do microcompu-

tador, o usuário deve ser capaz de abrir e fechar o invólucro de maneira fácil e prática a

fim de se conectar ao mesmo. Desta forma, o invólucro foi desenvolvido em três partes

separadas que se encaixam facilmente através de abas que devem ser parafusadas umas

nas outras.

O esboço do invólucro do módulo de visão se encontra na figura 6, e o desenho de

conjunto do mesmo se encontra no apêndice C.

Figura 6: Esboço do invólucro.

29

5 METODOLOGIA

5.1 Bloco EV3

Como já mencionado anteriormente, a LEGO dispõe de um software de programação

em blocos próprio para o desenvolvimento dos projetos com o EV3. Além de programar,

o software disponibiliza ao usuário as informações f́ısicas do bloco inteligente, diversas

ferramentas de ajuda, atualização de software e de firmware, entre outros (LEGO, 2013e).

No âmbito deste projeto, a ferramenta mais importante dispońıvel é a importação

de blocos de programação. Através dela, o usuário é capaz de importar diferentes blocos

criados por terceiros com as mais diversas finalidades. O arquivo a ser importado possui

extensão .ev3b, e nada mais é do que uma pasta compactada possuindo todos os arquivos

necessários para a utilização do bloco.

O módulo de visão a ser desenvolvido deve, portanto, estar associado a um novo

bloco de programação, o qual deverá conter as funcionalidades propostas anteriormente. Foi

neste cenário que a LEGO decidiu criar uma versão especial do software de programação

direcionada ao desenvolvimento de novos sensores. O mesmo consiste em uma versão

simplificada do software, porém com diferentes funcionalidades as quais permitem a

análise, criação e modifição do conteúdo do arquivo a ser importado.

Figura 7: Árvore de di-

retórios de um

bloco.

A estrutura completa do arquivo .ev3b pode ser en-

contrada em (LEGO, 2013a). Este é composto por diver-

sos diretórios, como mostra o exemplo da figura 7. O di-

retório principal recebe o nome do bloco e possui um arquivo

blocks.xml, um diretório VIs, um diretório strings, um di-

retório images e um diretório help. O diretório VIs é aquele

que contém todo o código do bloco, implementado em arqui-

vos .vix. Os códigos que independem do hardware pertencem

ao diretório VIs, enquanto aqueles que pertencem aos blo-

cos NXT e EV3 devem ficar agrupados nos subdiretórios de

nomes NXT e PBR, respectivamente.

Já o diretório strings possui subdiretórios por páıs,

nomeados com o código do idioma do mesmo (como “en-US”).

Cada um desses subdiretórios contém um arquivo blocks.xml

que provê os nomes a serem exibidos ao usuário, um texto

descritivo e links de ajuda para os ı́tens programáticos de-

finidos no arquivo blocks.xml principal no idioma do páıs.

Caṕıtulo 5. Metodologia 30

Figura 8: Representação em blocos do módulo de visão.

Todas as imagens usadas na palheta e as configurações dos parâmetros do bloco se

agrupam no diretório images. Todas estas imagens possuem nomes e tamanhos espećıficos

para serem reconhecidas pelo software.

Finalmente, o diretório help também possui subdiretórios por páıs, nomeados com

o código do respectivo idioma, e contém um arquivo .html com informações de apoio à

utilização do bloco. Todas as imagens relacionadas a este arquivo devem ser colocadas

nesta mesma pasta.

Os arquivos blocks.xml acima mencionados são usados para definir quase tudo sobre

o bloco, exceto o código .vix que é compilado e usado no programa. Aquele que se encontra

no diretório principal define, por exemplo, qual código .vix usar em um determinado modo,

os parâmetros de um determinado modo, e qual modo usar como padrão ao colocar o bloco

no ambiente de programação pela primeira vez. Já aquele que se encontra no diretório

strings mapeia alguns elementos programáticos no primeiro blocks.xml para exibir nomes

e fornecer textos de ajuda.

Os arquivos .vix, responsáveis pelo funcionamento do bloco, só podem ser criados

no ambiente de programação para desenvolvimento de novos sensores. Os mesmos podem

ser programados através de uma combinação de blocos mais simples (como funções

matemáticas, lógicas, de controle de fluxo e estruturas de dados) e de funções de mais

baixo ńıvel, chamadas “gray blobs”(LEGO, 2013a). Estas permitem, por exemplo, o acesso

aos dados recebidos pelo bloco inteligente através das portas de entrada.

No desenvolvimento do módulo de visão, criou-se o bloco EVision.ev3b, que pode

ser diretamente importado no software de programação em blocos da LEGO. Os arquivos

intŕınsecos ao mesmo se encontram no apêndice B.

A figura 8 apresenta o bloco quando colocado no ambiente de programação. Os

principais elementos, indicados na figura, representam:

1. Porta de entrada padrão do módulo de visão (4);

2. Botão para seleção dos modos a serem utilizados;

Caṕıtulo 5. Metodologia 31

Figura 9: Representação em blocos dos modos de identificação de cores, formas e faces,
respectivamente.

3. Parâmetro de entrada do modo selecionado;

4. Parâmetros de sáıda do modo selecionado.

O EVision implementa, em alinhamento com os requisitos do projeto, três modos:

identificação de cores, de formas e de faces. Todos os modos implementados são catego-

rizados como funções de medição. Os blocos correspondentes a cada um dos modos são

representados na figura 9.

O modo de identificação de cores possui um parâmetro de entrada, o qual permite o

usuário escolher a identificação da cor vermelha (1), azul (2) ou verde (3), e dois parâmetros

de sáıda, que fornecem a posição no eixo horizontal (Posição X) e o tamanho (Área) do

maior objeto da cor selecionada. Os valores são fornecidos como uma porcentagem do

tamanho da imagem capturada pela câmera. Caso nenhum objeto da cor selecionada seja

detectado, os valores dos parâmetros de sáıda são todos iguais a zero.

Analogamente, o modo de identificação de formas possui um parâmetro de entrada

para a seleção das formas retangular(1), circular(2) e triangular(3), e dois parâmetros

de sáıda com a posição horizontal (Posição X) e o tamanho (Área) do maior objeto da

forma selecionada. Caso nenhum objeto da forma selecionada seja detectado, os valores

dos parâmetros de sáıda são iguais a zero.

Já o modo de identificação de faces possui quatro parâmetros de sáıda: número

de faces detectadas (# de faces), posição horizontal (Posição X), vertical (Posição Y) e

tamanho (Área) da maior face detectada. Caso nenhuma face seja detectada, os valores

dos quatro parâmetros de sáıda são iguais a zero.

Os nomes de exibição e textos de ajuda existem apenas nas ĺınguas portuguesa e

inglesa, ou seja, existem penas dois subdiretórios nos diretórios strings e help: o “en-US”e

o “pt”.

Caṕıtulo 5. Metodologia 32

Figura 10: Configuração do conector implementado nas portas de entrada do EV3. Re-
produzido de (LEGO, 2013d).

5.2 Protocolo de comunicação

O desenvolvimento de um novo sensor para o LEGO MINDSTORMS EV3 demanda

um estudo aprofundado do bloco inteligente e, mais especificamente, das suas portas de

entrada. A sua principal funcionalidade é permitir o sistema reagir ao seu entorno através

do feedback dos sensores. Esta comunicação é implementada através de uma interface de 6

fios (LEGO, 2013d). O esquema detalhado dos fios atrás da porta 1 do EV3 se encontra

na figura 10.

Neste caso, o pino 1 suporta a leitura de valores analógicos ou sensores que requerem

um ńıvel de tensão mais elevado. O pino 2 é usado durante a função de autoidentificação

do sensor. Os pinos 3 e 4 fornecem os ńıveis de tensão 0 V (Ground) e 5 V (VCC),

respectivamente. Quando o sistema identifica automaticamente o tipo do sensor atrelado à

porta, o mesmo configura os pinos 5 e 6 para a funcionalidade apropriada.

O EV3 suporta a troca de informações de diferentes maneiras: valores analógicos,

comunicação I2C ou UART. A comunicação I2C suporta uma taxa de transmissão máxima

de 9600 bits/s e um tamanho máximo de 32 bytes de buffers de comunicação. Toda

comunicação I2C é executada dentro de drivers de software, assim como todos os dispositivos

externos devem incluir resistores pull-up em ambos os pinos 5 e 6.

A comunicação bi-direcional mais rápida que o EV3 suporta é a UART. Sendo

uma comunicação asśıncrona, ela suporta taxas de transmissão entre 2400 bits/s e 460k

bits/s nas portas 1 e 2, enquanto as portas 3 e 4 suportam até 230k bits/s. A comunicação

UART usa 1 bit de ińıcio, 8 bits de dados, nenhum bit de paridade e 1 bit de parada.

A partir de então, para se estabelecer a conexão desejada entre o sensor e o

EV3, uma configuração de conexões espećıfica deve ser seguida. A plataforma suporta

a autodetecção dos elementos externos através da identificação dos ńıveis de tensão aos

quais os pinos de 1 a 6 estão conectados.

Caṕıtulo 5. Metodologia 33

Tabela 1: Sequência de autoidentificação nas conexões de entrada. Reproduzido de (LEGO,
2013d).

Dispositivos I2C

Nı́vel no pino 2 é LOW
Nı́vel no pino 5 é HIGH
Nı́vel no pino 6 é HIGH
Outras validações requerem comunicação

Sensor de Luz do NXT
Nı́vel no pino 2 é LOW
Nı́vel no pino 5 é LOW

Sensor de Cor do NXT
Nı́vel no pino 2 é LOW
Valor no pino 1 é menor do que 100 mV

Sensor de Toque do NXT
Nı́vel no pino 2 é LOW
Valor no pino 1 é maior do que 4800 mV

Sensor de Toque do NXT
Nı́vel no pino 2 é LOW
Valor no pino 1 é entre 850 mV e 950 mV

Sensor de Toque do NXT
Nı́vel no pino 2 é LOW
Nenhum dos cenários acima são ativos

Sensor Digital do EV3
Nı́vel no pino 2 é HIGH
Valor no pino 1 é menor do que 100 mV

Sensor Simples do EV3
Nı́vel no pino 2 é HIGH
Valor no pino 1 é entre 100 mV e 3100 mV

Sensor de Temperatura do NXT
Nı́vel no pino 2 é HIGH
Valor no pino 1 é maior do que 4800 mV
Nı́vel no pino 6 é HIGH

Inicialmente, todas as portas de entrada são identificadas como “Porta Aberta”,

estado correspondente aos seguintes ńıveis de tensão:

• Valor no pino 1 é maior do que 4800 mV (valor AD)

• Nı́vel no pino 2 é HIGH (E/S digital)

• Nı́vel no pino 5 é HIGH (E/S digital)

• Nı́vel no pino 6 é LOW (E/S digital)

• Valor no pino 6 é menor do que 150 mV (valor AD)

A sequência de detecção utilizada, assim como os elementos identificáveis pelo atual

firmware, são apresentados na tabela 1.

A arquitetura de comunicação implementada para os sensores digitais da LEGO

MINDSTORMS EV3 (i.e.para os sensores que se comunicam via UART) requer que o

dispositivo siga um protocolo espećıfico. Este protocolo foi desvendado em (KOHLER,

2015). Existem 4 tipos de mensagem:

Caṕıtulo 5. Metodologia 34

1. Mensagens de sistema

2. Mensagens de comando

3. Mensagens de informação

4. Mensagens de dados

Cada mensagem segue uma das seguintes estruturas:

• Byte de mensagem (mensagens do tipo 1)

• Byte de mensagem, byte de checksum6 (mensagens dos tipos 2 e 4)

• Byte de mensagem, byte de informação, mensagem de payload7 e byte de checksum

(mensagens do tipo 3)

O byte de mensagem tem uma estrutura especial, ObXXLLLYYY, onde: XX indica

o tipo de mensagem; LLL indica o tamanho da mensagem de payload (de fato, o tamanho

do payload é exatamente 20bLLL bytes.); para mensagens do tipo 1 e 2, YYY indica o

subtipo da mensagem , enquanto que para mensagens do tipo 3 e 4, 0bYYY é um número

de modo do sensor.

As tabelas que decodificam todos os tipos de mensagens acima citados se encontram

no anexo A.

O protocolo de comunicação com o EV3 funciona da seguinte maneira: inicialmente,

o pino de transmissão Tx da UART (i.e. pino 6) deve ficar em LOW por, no mı́nimo, 500

ms. Esta condição indica ao EV3 uma condição de quebra, ou seja, a conexão de um novo

sensor. A partir de então, ambos EV3 e sensor começam a mandar mensagens: o EV3

é capaz de enviar ao sensor as mensagens de sistema ACK e NACK e as mensagens de

comando SELEÇÃO e ESCRITA; enquanto o sensor pode enviar ao EV3 as mensagens

de sistema ACK e SYNC, as mensagens de comando TIPO, MODOS e VELOCIDADE,

todas as mensagens de informação e de dados.

O diagrama de sequência da figura 11 apresenta uma visão geral do protocolo de

comunicação entre o EV3 e um sensor digital.

Nele, o sensor retransmite o protocolo até que o mesmo receba uma mensagem de

ACK do EV3 dentro de 80 ms após o final do envio do mesmo. A partir desta confirmação,

o EV3 passa a enviar, a cada 300 ms, mensagens de NACK para o sensor. Se nenhuma

6 Também conhecido por soma de verificação, é um código usado para verificar a integridade dos dados
transmitidos.

7 É a parte essencial da mensagem transmitida, ou seja, não inclui o “cabeçalho”da mensagem.

Caṕıtulo 5. Metodologia 35

Figura 11: Protocolo de comunicação entre o EV3 e o sensor digital. Adaptado de (LEGO,
2013d).

Caṕıtulo 5. Metodologia 36

mensagem de dados for recebida pelo EV3 dentro de 5 NACKs, a comunicação se encerra

e o sensor deve ser reinicializado.

No presente projeto, a comunicação serial entre o módulo de visão e o EV3

escolhida foi a UART, devido à sua elevada taxa de transmissão de dados e simplicidade de

implementação. Sendo assim, o módulo deverá se autoidentificar como sendo um Sensor

Digital do EV3, o que significa que o ńıvel de tensão no pino 1 deverá ser menor do

que 100 mV enquanto o pino 2 deverá permanecer em HIGH. Os pinos 5 e 6 serão,

em seguida, configurados pelo EV3 com as funcionalidades UART RX e UART TX,

respectivamente.

Uma vez implementado o bloco de programação do EV3, é posśıvel definir as

mensagens do protocolo de comunicação. A primeira mensagem é a mensagem de comando

de TIPO, a qual define o identificador módulo de visão como sendo igual a 66. Em

seguida, tem-se a mensagem de comando de MODOS. Ela define dois parâmetros: o

número de modos suportados e o número de modos a serem mostrados. No caso do projeto

do sensor desenvolvido, esses números são iguais entre eles e iguais ao número de funções

do módulo, ou seja, iguais a 3. Na prática, envia-se o número de modos menos 1, ou seja,

a informação a ser efetivamente enviada é igual a 2. A última mensagem de comando é a

VELOCIDADE. Nela define-se a velocidade máxima de transmissão de dados suportada

pelo sensor, ou seja, a nova baudrate da comunicação serial entre o EV3 e o mesmo. A

velocidade máxima do módulo de visão foi definida como sendo igual a 57600.

As próximas mensagens a serem enviadas são as mensagens de informação de cada

um dos 3 modos. Deve-se enviar os modos de trás para frente, ou seja, o último modo deve

ser o primeiro a ser enviado enquanto o primeiro modo deve ser o último. Tanto a ordem

quanto as informações de todos os modos foram estabelecidas no arquivo blocks.xml do

diretório principal (vide apêndice B).

O terceiro modo, primeiro a ser enviado, é o de identificação de faces. A primeira

mensagem de informação a ser enviada é a de NOME, ou seja, EV-FACE. Seguinte,

deve-se enviar a mensagem de VALBRUTO, que define o intervalo de valores brutos

dentro do qual as informações enviadas pelo sensor devem pertencer. Definiu-se, então, o

intervalo entre 0 e 100 uma vez que todos os valores (exceto o número de faces detectadas)

são dados em porcentagem da resolução da câmera.

Como o intervalo de valores em porcentagem seria igual ao intervalo padrão (0-100),

não é necessário enviar a mensagem de PCT. A próxima mensagem a ser enviada é a

mensagem de SI, que define o intervalo de valores no SI correspondente aos valores brutos.

Este intervalo foi definido como sendo idêntico ao intervalo de valores brutos (0-100). A

mensagem de SIMBOLO fornece o nome da unidade no SI. Como a maior parte das

informações é enviada pelo módulo de visão em porcentagem, o śımbolo definido foi pct.

Caṕıtulo 5. Metodologia 37

Por fim, uma das mensagens mais importantes para o módulo de visão é a mensagem

de FORMATO, a qual define o número e o tipo de dados enviados pelo sensor, além do

número de d́ıgitos e de decimais a mostrar. Para o modo de identificação de faces, são

necessários 4 itens do tipo inteiro de 8 bits com até 3 d́ıgitos e 0 decimais a mostrar.

O segundo modo é o de identificação de formas. Seu NOME é EV-SHP e os dados

enviados pelo sensor em VALBRUTO estão dentro do intervalo de 0 a 100, já que todos

os valores são dados em porcentagem da resolução da câmera. O intervalo de valores no

SI também é igual a 0-100 e o SIMBOLO é, portanto, igual a pct. Seu FORMATO é

definido como 8 itens do tipo inteiro de 8 bits com até 3 d́ıgitos e 0 decimais a mostrar.

Analogamente, o primeiro modo, e último a ser enviado, é o de identificação de cores.

Seu NOME é EV-COL, os intervalos dos dados em VALBRUTO e no SI são iguais

a 0-100 (todos os valores sendo portanto também dados em porcentagem da resolução

da câmera), o SIMBOLO é pct e o FORMATO contém 8 itens do tipo inteiro de 8

bits com até 3 d́ıgitos e 0 decimais a mostrar.

No final, uma mensagem de ACK é enviada. Espera-se que, durante os 80 ms que

seguem o final do envio do protocolo, o EV3 responda com uma mensagem de ACK. Se

esta resposta não for recebida, o protocolo completo deve ser re-enviado. Senão, o sensor

pode começar a enviar as mensagens de DADOS referentes ao módo selecionado. Sendo

o primeiro modo definido como padrão, o sensor deve começar qualquer comunicação

enviando as informações referentes a este modo. Em seguida, o EV3 envia uma mensagem

de SELEÇÃO indicando o modo que o sensor deve começar a enviar as informações a

partir de então.

5.3 Programação do microcomputador

A biblioteca de tratamento de imagens mais recomendada para aplicações em tempo real é

a OpenCV (Open Source Computer Vision). Ela possui interface para C++, C, Python

e Java e suporta Windows, Linux, Mac OS, iOS e Android (OPENCV, 2015). Para manter

a facilidade do projeto e do software aberto, foi escolhida a liguagem de programação

mais “amigavel”dentre as listadas acima: o Python, cujas caracteŕısticas estão ligadas

à produtividade, legibilidade, qualidade, facilidade, portabilidade, interoperabilidade e

customização. Em outras palavras, Python é uma linguagem que foi criada para programar

de maneira rápida, suportando diversos paradigmas de programação. Sua caracteŕıstica

mais marcante, comumente chamada de baterias inclusas, significa que quase tudo o que é

necessário para lançar um programa em Python está presente na instalação básica.

Caṕıtulo 5. Metodologia 38

Figura 12: Esquema de arquivos em Python.

5.3.1 Estrutura do Programa

O programa é basicamente dividido em duas partes: o envio protocolar, responsável pela

comunicação com o bloco inteligente e identificação do sensor; e o envio das mensagens de

execução, que definem a função a ser utilizada pelo sensor e a trasmissão de informações

do sensor ao bloco. Um esquema simplificado dos arquivos pode ser analisado na figura 12.

O programa protocol.py é o responsável pelo gerenciamento da transmissão

protocolar e de dados entre o sensor e o EV3. As funcionalidades do sensor são controladas

pelos programas secundários colortracker.py, shapetracker.py e facetracker.py. Os

Figura 13: Esquema UML do programa.

Caṕıtulo 5. Metodologia 39

arquivos relacionados aos programas se encontram no apêndice D. As classes e funções são

descritas na figura 13.

sendProtocol é a função que estabelece todos os parâmetros de comunicação

entre o sensor e o bloco inteligente. Esses parametros estão descritos dentro do protocolo

inicial. Para essa comunicação foram utilizadas as bibliotecas pyserial, que encapsula o

acesso para a porta serial, e a mraa, utilizadas em plataformas embarcadas, como o Edison

ou Galileo. As ações realizadas pela função sendProtocol são:

• Configuração das portas da UART;

• Aplicação do nivel logico LOW durante 500 ms;

• Envio do protocolo de comunicação;

• Alteração da baudrate para o ińıcio da transmissão de dados.

#Transforma o pino 35 da UART (TX) em uma porta GPIO

x=mraa.Gpio(35)

#Define como pino de saida

x.dir(mraa.DIR_OUT)

#Forcar o TX > 500 ms com nivel logico baixo

x.mode(2)

time.sleep(0.505)

x.mode(0)

#Inicializacao dos pinos da UART

x = mraa.Uart(0)

#Definicao inicial da BAUD RATE (2400), padrao para o kit EV3

u = serial.Serial(’/dev/ttyMFD1’,2400, timeout = 1.4)

#Limpa RX e o TX

u.flushInput()

u.flushOutput()

#Inicio da mensagem protocolar

msg = bytearray.fromhex(’Protocolo a ser enviado’)

u.write(msg)

#Apos envio da mensagem, espera resposta afirmativa do bloco EV3 (ACK)

info=u.read()

Caṕıtulo 5. Metodologia 40

#Testa o recebimento da mensagem

if info:

#Se mensagem for um ACK saimos da funcao de envio do protocolo

if (info.encode("hex")==’04’):

break

#Redefine baudrate para uma de transmissao da dados (mais rapida)

u.baudrate=57600

As funções uartData e Calculo devem executadas em paralelo para permitir

a simultaneidade de leitura e de envio de dados ao bloco inteligente. A arquitetura

implementada deve permirir também a troca de informações entre as funções, como por

exemplo a mudança de modo de operação. Para tanto, a biblioteca multiprocessing, que

suporta processos através da utilização de uma API semelhante à biblioteca de threading,

foi a solução escolhida. Mais especificamente, são utilizadas as funções Process, para gerar

dois processos que trabalhariam simultaneamente e Queue, para criar uma “ponte”entre

esses processos e permitindo, assim, a troca de informação entre eles.

from multiprocessing import Process, Queue

def uartData (q,t,v):

#Conteudo ...

def calculo (q,t):

#Conteudo ...

#Criamos um ponto de troca de informacoes entre os processos

q = Queue()

t = Queue()

#Criacao dos processos

p = Process(target=uartData, args=(q,t,u,))

k = Process(target=calculo, args=(q,t,))

p.join()

k.join()

uartData é a função responsável por “escutar”as mensagens enviadas pelo bloco

inteligente pelo pino Rx e enviar as mensagens do sensor ao EV3 pelo pino Tx. Essencial-

mente, o EV3 envia ao sensor mensagens de SELEÇÃO, reagindo a uma demanda do

usuário para a troca de modo no programa. Essa mensagem é composta por 3 bytes:

• 43: indica a demanda de mudança de modo do sensor;

• 00/01/02: 00 indica a troca para o modo de identificação de cores, 01 para formas

Caṕıtulo 5. Metodologia 41

e 02 para faces;

• Checksum: byte de verificação.

#Espera alguma informacao enviada pela funcao Calculo

if not q.empty():

#Recupera essa informacao

msg = q.get()

#Envia essa informacao para a UART (para o Bloco Inteligente [Tx])

v.write(bytearray.fromhex(msg))

#Le constantemente a UART [RX]

info= v.read()

#Verifica a mensagem de modo

if info:

#Se recebeu uma mensagem de selecao:

if (info.encode("hex")==’43’):

#Le o proximo byte (00,01 ou 02)

info = v.read()

if (info.encode("hex")==’01’) :

#Caso modo 01 envia modo 1 a funcao Calculo

t.put(modo)

elif (info.encode("hex")==’02’) :

#Caso modo 02 envia modo 2 a funcao Calculo

t.put(modo)

Calculo tem como objetivos principais o tratamento das imagens capturadas pela

câmera e o alinhamento do modo selecionado pelo usuário com a construção correta da

mensagem que será enviada à função uartData e, posteriormente, ao bloco inteligente. A

mensagem de dados constrúıda por essa função apresenta a seguinte forma:

• D8/D9/D2: indica o modo do sensor (D8 = modo 0, D9 = modo 1 e D2 = modo

2);

• Dados: informação recuperada a partir do tratamento de imagens realizado. Seu

tamanho varia em função do modo selecionado (8 bytes = modo 0 e 1 e 4 bytes =

modo 2);

• Checksum: byte de verificação

Caṕıtulo 5. Metodologia 42

#Verifica se recebeu alguma informacao do uartData (no caso o modo)

if not t.empty():

#Recupera essa informacao

modo = t.get()

#Se modo 0 (MODO PADRAO)

if modo == 0:

#Color Tracker

#Execucao da funcao de identificacao de cores

res = col.ColourTrack(capture)

#Aplicacao da funcao "checksum" para construir a mensagem

msg = cs.cksum(res,modo)

elif modo == 1:

#Form Tracker

#Execucao da funcao de identificacao de formas

res = shp.ShapeTracker(capture)

msg = cs.cksum(res,modo)

elif modo == 2:

#Face Tracker

#Execucao da funcao de identificacao de rostos

es = face.FaceTracker(capture,faceCascade)

msg = cs.cksum(res,modo)

#Envia a mensagem para a funcao uartData

q.put(msg)

#Tempo de espera entre 2 mensagens enviadas

time.sleep(0.05)

Checksum é a função secundária, utilizada por Cálculo, responsável por gerar o

byte de verificação da mensagem e montar a mensagem final a ser enviada. Sendo assim,

essa função recebe os dados brutos gerados pelas funções de tratamento (msg) e o modo de

execução (modo) e retorna a mensagem final completa, ou seja, com o byte de identificação

de modos no ińıcio e o de verificação no final:

#Numero de bytes contidos na mensagem

nbytes=len(msg)

M=’’

for i in range(0, nbytes):

#Cria-se um vetor com a string msg

M=M+"{:02x}".format(msg[i])

#Incluimos o modo no inicio da mensagem

if modo == 0:

M =’D8’+M

Caṕıtulo 5. Metodologia 43

elif modo == 1:

M =’D9’+M

elif modo == 2:

M =’D2’+M

msg = bytearray.fromhex(M)

nbytes=len(msg)

R=0x00

#Faz-se XOR entre cada byte da mensagem

for x in range(0,nbytes):

R=R^msg[x]

#Finaliza-se com XOR ff

CS=R^0xff

#Monta a mensagem

msgCS=M + "{:02x}".format(CS)

return msgCS

As funções de tratamento de imagem seguem um padrão básico comum, diferenciando-

se apenas em suas funcionalidades espećıficas. Elas são implementadas com a utilização da

biblioteca OpenCV.cv2, que apresenta funções standards para a identificação de objetos e

caracteŕısticas espećıficas da imagem, como é o caso, por exemplo, da função contours,

capaz de identificar curvas juntando todos os pontos cont́ınuos (isto é, ao longo da fronteira)

que tenham a mesma cor ou intensidade. Os “contornos”são uma ferramenta útil para a

análise de formas e detecção de objetos.

#Captura um frame de imagem

ret, image = capture.read()

#Aplica um filtro sobre o frame para converter a imagem para escalas de

cinza se flag igual a COLOR_BGR2GRAY ou HSV se COLOR_BGR2HSV

gray = cv2.cvtColor(image, cv2.flag)

#Implementa da funcao que encontra no frame as caracteristicas desejadas

(seja cor, foma ou o numero de faces)

#Identifica o numero de objetos encontrados

for x in objs:

#Dentre todos os objetos selecionados, apenas o maior sera identificado

if area>max_area:

#Determina o vetor de informacao a ser enviado

res=np.int_(<VALORES>)

return res

ColorTrack é a função que implementa a identificação de cores. Nela são definidas

Caṕıtulo 5. Metodologia 44

faixas de cores, no formato RGB, que são expressos em vetores na forma [RED,GREEN,BLUE].

Esses valores foram obtidos de forma experimental, e o resultado se encontra a seguir:

• Vermelho: max = [5, 255, 255] — min = [0, 150, 0]

• Azul: max = [130, 255, 255] — min = [100, 100, 100]

• Verde: max = [80, 255, 255] — min = [40, 100, 100]

Utiliza-se, então, a função findContours para identificar qualquer objeto com as

caracteŕısticas descritas pelas faixas de cores.

ShapeTracker é a função que implementa a identificação de formas simples. Nela,

foram contabilizados o número de linhas que compõem os poĺıgonos identificados na

imagem, e cada uma das formas desejadas foi associada a um número espećıfico de linhas,

de maneira que:

• Triangulo: 3 linhas

• Quadrado: 4 linhas

• Ćırculo: mais de 15 linhas

Essa função utiliza o método approxPolyDP, o qual aproxima as formas detectadas

por uma curva poligonal com a precisão especificada, para identificar o número de lados

de todos os poligonos destacados.

FaceTracker é a função que implementa a identificação de faces. Utiliza-se

um método espećıfico, chamado Haar Cascades (VIOLA P. ; MITSUBISHI ELECTR.

RES. LABS., 2001), o qual utiliza uma abordagem baseada na aprendizagem de máquina,

onde uma função “cascata”é treinada a partir de varias imagens positivas (com o objeto)

e negativas (sem o objeto), gerando um arquivo .xml com as caracteŕısticas do objeto em

análise. Esse arquivo é, em seguida, utilizado na detecção deste objeto em outras imagens.

5.3.2 Execução no Boot (Edison)

Um dos requisitos do projeto é a inicialização automática das funcionalidades do sensor,

evitando assim a necessidade do usuário de acessar a porta serial do Edison a fim de

inicializá-las manualmente. A solução escolhida foi o lançamento das funções durante o

boot do microcomputador. Para isso, foi necessario escrever um programa para alterar

a programação do shell. Mais especificamente, o código shell a ser alterado chama-se

Again Shell, mais conhecido por bash. O diretorio que contém os arquivos bash e que é,

então, responsável por iniciar e parar serviços durante a inicialização e/ou desligamento do

Caṕıtulo 5. Metodologia 45

sistema, chama-se /etc/init.d/. Adicionou-se um script ev3.sh a esse diretório que executa

o programa do módulo de visão no boot do Edison e continua sua execução no background

do sistema.

#! /bin/sh

CONFIGURACOES INICIAIS DO SCRIPT

Provides: ev3

Required-Start: $all

Required-Stop:

Default-Start: 1 2 3 4 5

Default-Stop: 0 6

Short-Description: Send ev3 protocol

Description: Send the module protocol to the ev3 brick.

FIM DAS CONFIGURACOES

Commandos para a Inicializacao do sistema

start(){

Comando direcionado ao compilador

export

PYTHONPATH=$PYTHONPATH:/usr/local/lib/i386-linux-gnu/python2.7/s$

Execucao do arquivo main.py (que chama a funcao sendProtocol)

& : Esse comando permite que a execucao do programa aconteca no

background

python /home/edison/EVision/main.py &

}

Comando para o desligamento do sistema

stop(){

Ao fim do programa eliminamos qualquer processo remanescente do

programa executado (main)

pkill -9 -f main

}

case "$1" in

start)

start

;;

stop)

stop

;;

*)

A interação entre os processos e funções acima descritos é apresentada na forma de

diagrama de sequências na figura 14.

Caṕıtulo 5. Metodologia 46

Figura 14: Troca de informações entre os processos.

Caṕıtulo 5. Metodologia 47

5.4 Glue Logic

O processo de autoidentificação dos sensores digitais pelo EV3 possui um timeout de

aproximadamente 3s dentro dos quais, depois que os ńıveis de tensão dos pinos 1 e 2 forem

ajustados, o sensor deve enviar o protocolo. Sabe-se que, no Intel Edison, o tempo necessário

para que o sistema operacional se inicie após a sua energização é de aproximadamente

30s. Levando em consideração que a função de implementação do módulo de visão será

lançada no final do processo de inicialização do Edison e que o mesmo será alimentado

pelo bloco inteligente, uma vez conectado ao EV3, o sensor deve demorar 10 vezes mais

do que o tempo dispońıvel para enviar o protocolo de comunicação após o estabelecimento

dos ńıveis de tensão dos pinos 1 e 2, impedindo assim a autoidentificação do mesmo.

Faz-se necessária a adição de um circuito lógico que permita o controle dos ńıveis

de tensão dos pinos 1 e 2. Como o o valor do pino 2 já é HIGH quando o mesmo está em

aberto, resta apenas o controle do ńıvel de tensão do pino 1. O objetivo deste circuito

é, então, impor ao pino 1 uma tensão menor do que 100 mV somente quando o Edison

começar a se comunicar com o EV3, ou seja, quando este começar a enviar o protocolo de

comunicação. Este tipo de circuito é mais comumente chamado de “Glue Logic”(HILL, ,

pag. 537).

Durante a inicialização do Edison, o ńıvel lógico do seu pino Tx é HIGH. Quando o

protocolo começa a ser enviado, o mesmo muda para o ńıvel LOW. A ideia desse circuito

é se aproveitar desse comportamento do pino Tx para ajustar a tensão do pino 1. O ńıvel

de tensão esperado após a implementação do circuito de Glue Logic no pino 1 em função

dos valores lógicos apresentados pelo Tx do Edison está representado na figura 15.

A Glue Logic utiliza portas lógicas NAND para a implementação do circuito digital

conhecido como flip-flop (HILL, , pag. 504). A figura 16 apresenta esse circuito e a sua

tabela da verdade.

Na Glue Logic, o Tx do Edison deve se conectar ao pino SET do flip-flop. Inicial-

mente, SET está em HIGH e CLEAR está em LOW. Nessa configuração, Q é LOW e Q é

HIGH. Após aproximadamente 5 milisegundos, CLEAR deve passar de LOW para HIGH

e se manter nesse ńıvel durante todo o funcionamento do circuito. Faz-se necessária a

utilização de um circuito temporizador. O mesmo pode ser obtido colocando um capacitor

Figura 15: Resultado esperado com a adição do circuito de Glue Logic.

Caṕıtulo 5. Metodologia 48

Figura 16: Circuito e Tabela da Verdade do flip-flop de NAND.

de 470nF em série com uma resistência de 10 kΩ. Para a descarga do capacitor, coloca-se

uma resistência em paralelo ao mesmo de valor 10 vezes maior do que a resistência em

série. Nesse momento, SET e CLEAR estão ambos em HIGH, o que significa que os valores

anteriores de Q e Q são mantidos. Dessa forma, garante-se que o estado inicial das sáıdas

Q e Q será LOW e HIGH, respectivamente.

A partir desse momento, apenas o valor de SET, conectado ao Tx, pode mudar, e

até que ele mude, o estado das sáıdas será mantido. Assim, quando o Tx muda para LOW

pela primeira vez, o valor de Q e Q mudam para HIGH e LOW, respectivamente. Desse

momento em diante, o valor das sáıdas Q e Q será HIGH e LOW, respectivamente, para

quaisquer valores do Tx. A sequência dos valores lógicos dos pinos SET, CLEAR, Q e Q

são graficamente apresentados na figura 17.

O circuito descrito fornece o comportamento esperado pelo pino 1 na sáıda Q.

Porém, o valor de tensão correspondente ao ńıvel lógico LOW varia entre 190 e 140 mV.

Para que o módulo seja reconhecido como um sensor digital, o valor de tensão no pino 1

deve ser inferior a 100 mV.

A resolução implementada para esse problema utiliza um transistor, que realiza

a amplificação da corrente (HILL, , pag. 62). Dessa forma, o ńıvel lógico LOW passa a

corresponder a um ńıvel de tensão muito próximo de 0 V. No caso da utilização de um

Figura 17: Valores lógicos do flip-flop ao longo do tempo.

Caṕıtulo 5. Metodologia 49

transistor do tipo NPN, deve se conectar a sáıda Q, de comportamento inverso ao desejado

no pino 1, ao pino de base do transistor. Assim, a sáıda com o comportamento desejado

se encontra no pino coletor do transistor. Resistores devem ser colocados tanto na base

quanto no coletor do componente para limitar a corrente no mesmo.

Uma vez consolidada a resolução do ajuste do ńıvel de tensão do pino 1, o circuito

de Glue Logic é também o responsável pela robustez dessa solução. Afim de estabilizar

rúıdos de baixa frequência provenientes dos pinos Tx e Rx do Edison, ambos devem estar

conectados a filtros passa-altas implementados com resistores e capacitores em série.

Finalizando o circuito da Glue Logic, observou-se que o sinal do pino Tx não é

potente o suficiente para ser identificado pelo EV3 de maneira constante.

A solução implementada utiliza duas portas lógicas NAND já dispońıveis no circuito.

Ambas possuem um dos pinos de entrada conectados ao VCC, configuração na qual o

NAND passa a agir como uma porta lógica inversora (NOT) do sinal presente no outro

pino de entrada. A ideia é, então, ligar o pino de sáıda de uma das portas ao pino de

entrada da outra, resultando assim em uma dupla-inversão do sinal de entrada da primeira

porta NAND. Esse circuito, conhecido como buffer, fortalece o sinal enviado sem alterar o

seu valor lógico, resolvendo assim as instabilidades do pino Tx.

Os desenhos esquemáticos de fabricação eletrônica deste circuito podem ser encon-

trados no apêndice A.

50

6 RESULTADOS

O objetivo principal do projeto foi definido como sendo a construção de um módulo de

visão integrado ao kit da LEGO MINDSTORMS EV3. O desenvolvimento desse sensor foi

dividido em duas partes principais: a implementação da conexão entre o EV3 e o Edison;

e a implementação do tratamento de imagens pelo Edison.

A implementação da conexão entre o bloco inteligente e o sensor pode ser subdividida

em duas: o desenvolvimento do bloco de programação necessário para que o EV3 seja

capaz de identificar o módulo de visão; e o envio, pelo Edison, das informações necessárias

para o estabelecimento da conexão entre os dois elementos.

No que concerne o bloco de programação do EV3, os resultados obtidos foram

satisfatórios: de maneira simples, o usuário é capaz de importar o arquivo EVision.ev3b no

ambiente de programação em blocos da LEGO e integrá-lo aos outros blocos, permitindo

assim a criação de programas mais complexos que se utilizam do módulo de visão.

As três funções que devem ser implementadas pelo módulo de visão são previstas

neste bloco. No modo de identificação de cores, o bloco retorna a posição horizontal e

a área do maior objeto da cor escolhida pelo usuário. De maneira análoga, o modo de

identificação de formas retorna a posição horizontal e a área do maior objeto da forma

filtrada. Já o modo de identificação de faces retorna o número de faces detectadas e as

caracteŕısticas de posição horizontal e vertical e tamanho da maior face encontrada.

Uma vez que o bloco de programação do EV3 esteja finalizado, é posśıvel recuperar

dele todas as informações necessárias para a implementação do protocolo de comunicação

entre o sensor e o bloco inteligente. Utilizando as bibliotecas piserial e mraa, foi posśıvel

desenvolver o programa sendProtocol.py que permite ao Edison o envio do protocolo

via UART para o EV3.

O mesmo, quando enviado em seguida ao ajuste dos ńıveis de tensão dos pinos

responsáveis pela autoidentificação do módulo como sensor digital do EV3, é identificado

com sucesso. Porém, essa conexão direta possui alguns defeitos graves: primeiramente,

a elevada quantidade de rúıdos nas portas Tx e Rx fazem com que a identificação do

protocolo pelo EV3 fique extremamente instável. Além disso, para que o sensor cumpra a

tarefa de autoidentificação de maneira independente, o protocolo deve ser enviado durante

o processo de inicialização do sistema operacional do Edison. Esse processo restringe o

momento em que os ńıveis lógicos dos pinos de autoidentificação devem ser ajustados,

uma vez que o envio do protocolo deve ser feito aproximadamente 3 segundos depois desse

ajuste.

Caṕıtulo 6. Resultados 51

Faz-se então necessária a adição do circuito de Glue Logic, o qual foi desenvolvido de

maneira a resolver os problemas de comunicação encontrados. Utilizando-se de capacitores,

resistores, transistores e portas lógicas NAND, a Glue Logic permitiu a integração do

envio tardio do protocolo pelo Edison e a atenuação dos rúıdos de forma que, uma vez

ligado ao EV3, o módulo de visão é corretamente identificado dentro de um peŕıodo de

aproximadamente 30 s.

Já no que concerne a implementação do tratamento de imagens pelo Edison, a

programação foi desenvolvida em Python utilizando a biblioteca OpenCV. A câmera,

conectada à porta micro USB OTG, faz a captura de imagens VGA a 30 frames por segundo.

Tanto a resolução quanto a taxa de transmissão de imagens mostraram-se suficientes para

a aplicação em tempo real implementada. A cada captura de imagem, os filtros de cor,

formas e face são implementados e as caracteŕısticas desejadas dos objetos identificados

são retornados pelas respectivas funções.

Para o função de identificação de cores, o algoritmo implementado é capaz de

identificar de maneira satisfatória o maior objeto nas três cores desejadas (vermelho, azul

e verde) e retornar suas posições horizontais e tamanhos relativos à resolução da iamagem.

Considerando que o intervalo dos valores das cores foi definido de maneira experimental, a

variação destes altera significantemente o resultado da função.

A função de identificação de formas foi implementada de forma similar à de cores,

e o seu resultado foi tão satisfatório quanto o primeiro uma vez que o algoritmo é capaz

de identificar o maior objeto das três formas desejadas (retangular, circular e triangular) e

retornar as posições horizontais e tamanhos. Como a identificação das formas utiliza o

número de arestas dos objetos como parâmetro de classificação, e circulos não tem arestas,

foi determinado que qualquer objeto com mais de 15 arestas é classificado como um ćırculo,

o que pode levar a resultados imprecisos para esta forma.

A implementação da identificação de faces, diferentemente das funções anterio-

res, exigiu a utilização do método Haar Cascades, que utiliza um arquivo .xml para a

parametrização das caracteŕısticas do rosto. Dessa forma, ela é a função que exige maior

processamento. Ainda assim, o resultado obtido foi satisfatório, mesmo que o processo de

identificação seja significantemente lento em relação aos outros filtros utilizados.

Uma vez desenvolvidas cada uma das partes do módulo, cria-se a necessidade de

integração das mesmas. Este processo é realizado implementado através do conceito de

multiprocessamento. Após o envio do protocolo de comunicação, dois processos paralelos

são criados. O primeiro cuida das tarefas de leitura e escrita da UART do módulo, enquanto

o segundo realiza os cálculos das funções. O processo de leitura controla o modo selecionado

e envia esta informação ao processo de cálculo. Este, por sua vez, faz o cálculo da função do

modo correspondente e envia o resultado deste para o primeiro processo, que se encarrega

de enviá-lo ao EV3.

Caṕıtulo 6. Resultados 52

Figura 18: Validação da integração do módulo de visão.

A escolha desta solução para a integração entre o software e o hardware desenvol-

vidos mostrou-se muito eficaz. Enquanto o tratamento da imagem não está finalizado, o

processo responsável pelo envio da informação continua enviando a última informação

dispońıvel. Essa informação é atualizada no momento em que o cálculo é finalizado e o

processo responsável transmite o resultado.

No que concerne a reprogramabilidade do módulo, o mesmo foi projetado de maneira

que o usuário seja capaz de abrir o envólucro, retirar o conector de alimentação da porta

micro USB Console, e se conectar via serial diretamente ao Edison. Uma vez conectado,

o mesmo é capaz de acessar o terminal, se conectar ao Edison, parar os processos que

implementam o módulo de visão (uma vez que os mesmos são lançados em background no

boot do sistema) e modificar o módulo. O usuário pode, também, configurar a rede wi-fi

do Edison e se conectar a ele via ssh, evitando assim o trabalho de desmontar o invólucro

todas as vezes que o mesmo for alterar a programação do sensor.

A maneira mais simples de validar o resultado obtido pela integração de todas as

partes do projeto é atraves da utilização do modo de inspeção das portas de entrada do

Caṕıtulo 6. Resultados 53

Figura 19: Exemplo de programação integrada aos outros blocos da LEGO.

EV3. Nele, o usuário é capaz de conectar os sensores às portas correspondentes e visualizar

o primeiro parâmetro recebido. A figura 18 apresenta um esquema com o resultado obtido

nessa validação após a integração de todos os elementos. Pode-se confirmar que, para

quaisquer modos selecionados, o parâmetro é atualizado conforme o esperado. Vale notar

que os valores que aparecem na figura são os valores padrão das funções, ou seja, eles

não correspondem aos parâmetros encontrados nas figuras do funcionamento da câmera,

que foram utilizadas somente para demonstrar visualmente o resultado do tratamento de

imagens.

Após a validação da integração, é posśıvel integrar o bloco a uma programação mais

complexa. A figura 19 mostra um exemplo de programação na qual o robô tenta manter

o maior objeto vermelho presente no seu campo de visão no centro do eixo horizontal

da câmera. Nela, a distância entre o centro do objeto e o centro da imagem controlam a

direção e a velocidade com que o robô precisa virar em torno do seu próprio eixo para

colocar o objeto no centro. Caso este já esteja no centro, o robô não se move. Se este se

encontra próximo ao centro, o robô vira suavimente no sentido de posicioná-lo no centro.

Já se o objeto está muito distante do centro, o robô vira rápidamente com o objetivo de

centralizá-lo.

O resultado da implementação deste algoritmo é conforme o esperado: o sensor

é capaz de se autoidentificar dados os 30 s de inicialização do Edison e enviar os dados

coletados da função selecionada. É posśıvel coletar os valores recebidos de forma a utilizá-los

como entradas para outros blocos da LEGO. Mesmo que este algoritmo não seja o mais

eficaz para a solução deste problema (já que este não espera pelo tempo de autoidentificação

do sensor e os resultados durante este peŕıodo de tempo são impreviśıveis), o mesmo é

capaz de consolidar a verificação da integração do módulo de visão desenvolvido ao kit da

LEGO MINDSTORMS EV3.

54

7 CONCLUSÃO

No ińıcio do projeto, diversos requisitos funcionais e não funcionais foram estabelecidos

a fim de guiar o desenvolvimento do módulo de visão integrado ao EV3. No final do

projeto, é posśıvel revisitá-los para realizar uma análise dos resultados obtidos na solução

implementada.

Nela, o usuário é capaz de conectar o sensor às portas de entrada do EV3 utilizando

os mesmos cabos dos sensores da LEGO, importar o bloco EVision.ev3b ao software de

programação da LEGO, recuperar as informações deste bloco e utilizá-las em outros blocos

da LEGO, além de reprogramar o módulo, mesmo que inicialmente seja necessário abrir o

invólucro para realizar tal tarefa.

O módulo, por sua vez, consegue se autoidentificar de forma autônoma, conectar-se a

uma câmera embarcada, realizar o tratamento das imagens dessa câmera e associar os resul-

tados ao modo correto. Todas as funcionalidades de base planejadas foram implementadas:

identificação de cores, formas e faces.

A solução é leve e pequena o suficiente para não atrapalhar a movimentação de um

robô de LEGO ao ser embarcado ao mesmo, porém ela não se mostrou tão robusta quanto

ela poderia ser, apresentando ainda alguns rúıdos que quebram a conexão entre o sensor e

o EV3.

De maneira geral, pode-se dizer que todos os requisitos, funcionais e não funcionais,

foram cumpridos de maneira satisfatória, de onde conlui-se que o projeto é de posśıvel

implementação e que a escolha dos materiais e da arquitetura do módulo permitem a

criação de um módulo de visão integrado ao kit da LEGO MINDSTORMS EV3, que era o

objetivo incial do projeto.

7.1 Sugestões para trabalhos futuros

A visão computacional ainda é um domı́nio que está em constante desenvolvimento. No

âmbito do tratamento de imagens, o projeto oferece infinitas oportunidades de desen-

volvimento de novas funcionalidades para o módulo, como por exemplo streaming de

imagens, identificação de formas mais complexas, entre outras. Com o avanço constante

da tecnologia, pode-se também almejar a implementação de algoritmos de otimização das

funcionalidades já implementadas nesse projeto.

Inspirada no software de blocos da LEGO MINDSTORMS, uma oportunidade

latente que nasce da realização desse projeto é a criação de um software de programação

Caṕıtulo 7. Conclusão 55

visual de tratamento de imagens, o qual implementaria as funções da biblioteca OpenCV.

No quesito compatibilidade, o módulo poderia ser aprimorado de forma a poder

ser utilizado também com o kit da segunda geração da LEGO, o NXT.

No que concerne o bloco de programação do EV3, nota-se que todas as funções

implementadas são do tipo “Medição”, criando assim a oportunidade do desevolvimento

de novos modos pertencentes a outras categorias. Pode-se, por exemplo, criar um modo

do tipo “Comparação”que realiza a conversão do valor da posição horizontal do objeto em

porcentagem recebido pelo módulo para a informação “direita”ou “esquerda”, ou então o

aprimoramento das dos modos de identificação de cores e formas no qual o usuário seja

capaz de obter as informações de todas as cores simultaneamente.

56

REFERÊNCIAS

AD, D. F. S. T.; BURGARDC, W.; DELLAERTA, F. Robust monte carlo localization
for mobile robots. In: Artificial Intelligence Volume 128, Issues 1–2. [S.l.: s.n.], 2000. p.
99–141. Citado na página 17.

BUHMANN, J. et al. The mobile robot rhino. AI Magazine Volume 16 Number 2 (1995)
(c© AAAI), v. 16, n. 2, p. 31–38, 1995. Full text available. Citado na página 17.

CAPRANI, O. RCX Manual. [S.l.], 2006. Dispońıvel em: 〈http://legolab.daimi.au.dk/
CSaEA/RCX/Manual.dir/RCXManual.html〉. Acesso em: 02 março 2015. Citado na
página 16.

CASEYTHEROBOT. General guide to sparkfun blocks for intel edison. SparkFun
Electronics, dezembro 2014. Dispońıvel em: 〈https://learn.sparkfun.com/tutorials/
general-guide-to-sparkfun-blocks-for-intel-edison〉. Acesso em: 21 junho 2015. Citado 2
vezes nas páginas 23 e 26.

DAS, P. K. et al. Article: Vision based object tracking by mobile robot. International
Journal of Computer Applications, v. 45, n. 8, p. 40–42, May 2012. Full text available.
Citado na página 17.

DAVISONA, A. J.; KITAB, N. Sequential localisation and map-building for real-time
computer vision and robotics. In: Robotics and Autonomous Systems Volume 36, Issue 4.
[S.l.: s.n.], 2001. p. 171–183. Citado na página 17.

DEMIRCI, B. et al. Implementing hog amp; amdf based shape detection algorithm for
computer vision amp; robotics education using lego mindstorms nxt. In: Technological
Advances in Electrical, Electronics and Computer Engineering (TAEECE), 2013
International Conference on. [S.l.: s.n.], 2013. p. 288–293. Citado na página 18.

EDUCATION, L. LEGO Education: Lego education worldwide. The LEGO Group,
2015. Institutional website. Dispońıvel em: 〈http://education.lego.com/fr-fr/about-us/
lego-education-worldwide/our-company〉. Acesso em: 25 setembro 2015. Citado na página
15.

ELECTRONICS123. Electronics123.com,inc: Sb101c usb cmos board camera.
Electronics123.com,inc. Dispońıvel em: 〈http://www.electronics123.com/shop/product/
sb101c-usb-cmos-board-camera-module-5204?search=SB101C+USB+CMOS+Board+
Camera+Module〉. Acesso em: 25 setembro 2015. Citado 2 vezes nas páginas 23 e 27.

GASPARI, M. Get started in robotic vision. Robot Science and Technology Magazine,
n. 8, p. 51–52, Feb/Mar 2001. Citado na página 18.

HILL, P. H. W. The Art of Electronics. [S.l.]: Cambridge University Press. Citado 2
vezes nas páginas 47 e 48.

HITECHNIC (Ed.). Página Web Institucional, HiTechnic Products. 2001–2012. Dispońıvel
em: 〈https://www.hitechnic.com/〉. Acesso em: 19 junho 2015. Citado na página 16.

http://legolab.daimi.au.dk/CSaEA/RCX/Manual.dir/RCXManual.html
http://legolab.daimi.au.dk/CSaEA/RCX/Manual.dir/RCXManual.html
https://learn.sparkfun.com/tutorials/general-guide-to-sparkfun-blocks-for-intel-edison
https://learn.sparkfun.com/tutorials/general-guide-to-sparkfun-blocks-for-intel-edison
http://education.lego.com/fr-fr/about-us/lego-education-worldwide/our-company
http://education.lego.com/fr-fr/about-us/lego-education-worldwide/our-company
http://www.electronics123.com/shop/product/sb101c-usb-cmos-board-camera-module-5204?search=SB101C+USB+CMOS+Board+Camera+Module
http://www.electronics123.com/shop/product/sb101c-usb-cmos-board-camera-module-5204?search=SB101C+USB+CMOS+Board+Camera+Module
http://www.electronics123.com/shop/product/sb101c-usb-cmos-board-camera-module-5204?search=SB101C+USB+CMOS+Board+Camera+Module
https://www.hitechnic.com/

Referências 57

INDUSTRIES, D. (Ed.). Página Web Institucional, Dexter Industries. 2015. Dispońıvel
em: 〈http://www.dexterindustries.com/site/〉. Acesso em: 19 junho 2015. Citado na
página 16.

INTEL. Intel Edison Development Platform. [S.l.], 2015. Dispońıvel em: 〈http:
//download.intel.com/support/edison/sb/edison pb 331179002.pdf〉. Acesso em: 30
setembro 2015. Citado na página 25.

KIRILLOV, A. LEGO Pan Tilt Camera and Objects Tracking. 2008. Dispońıvel em: 〈http:
//www.codeproject.com/Articles/31104/Lego-Pan-Tilt-Camera-and-Objects-Tracking〉.
Acesso em: 02 março 2015. Citado na página 19.

KIRILLOV, A. AForge.NET framework : Detecting some simple shapes in images. 2010.
Dispońıvel em: 〈http://www.aforgenet.com/articles/shape checker/〉. Acesso em: 02 março
2015. Citado na página 19.

KOHLER, S. lejos ev3 wiki: Uart sensor protocol. Sourcefourge, fevereiro 2015. Dispońıvel
em: 〈http://sourceforge.net/p/lejos/wiki/UART%20Sensor%20Protocol/〉. Acesso em: 30
setembro 2015. Citado 3 vezes nas páginas 33, 92 e 93.

LEGO. LEGO MINDSTORMS Education NXT User Guide. [S.l.], 2006. Dispońıvel em:
〈http://cache.lego.com/downloads/education/9797 LME UserGuide US low.pdf〉. Acesso
em: 02 março 2015. Citado na página 16.

LEGO. Creating Blocks for LEGO Mindstorms EV3. [S.l.], 2013. Dispońıvel em:
〈http://www.lego.com/en-us/mindstorms/downloads〉. Acesso em: 25 setembro 2015.
Citado 2 vezes nas páginas 29 e 30.

LEGO. Inanimate Reason: Lego R© education evolves stem learning with
the next generation lego mindstorms R© education ev3 platform. The
LEGO Group, 2013. Dispońıvel em: 〈http://inanimatereason.com/blog/2013/01/
lego-education-evolves-stem-learning-with-the-next-generation-lego-mindstorms-education-ev3-platform/
〉. Acesso em: 22 abril 2015. Citado na página 23.

LEGO. LEGO MINDSTORMS EV3 : History of lego robotics. The LEGO Group, 2013.
Institutional website. Dispońıvel em: 〈http://www.lego.com/es-es/mindstorms/history〉.
Acesso em: 02 março 2015. Citado na página 15.

LEGO. LEGO MINDSTORMS EV3 - Hardware Developer Kit. [S.l.], 2013. Dispońıvel em:
〈http://www.lego.com/en-us/mindstorms/downloads〉. Acesso em: 25 setembro 2015.
Citado 4 vezes nas páginas 24, 32, 33 e 35.

LEGO. LEGO MINDSTORMS EV3 - User Guide. [S.l.], 2013. Dispońıvel em:
〈http://www.lego.com/en-us/mindstorms/downloads〉. Acesso em: 25 setembro 2015.
Citado 2 vezes nas páginas 24 e 29.

LEGO. LEGO MINDSTORMS EV3 User Guide. [S.l.], 2013. Dispońıvel em:
〈http://www.lego.com/en-us/mindstorms/products/31313-mindstorms-ev3〉. Acesso em:
02 março 2015. Citado na página 16.

MAYNES-AMINZADE, D.; WINOGRAD, T. I. T. Eyepatch: prototyping camera-based
interaction through examples. In: UIST ’07 Proceedings of the 20th annual ACM
symposium on User interface software and technology. [S.l.: s.n.], 2007. p. 33–42. Citado
na página 17.

http://www.dexterindustries.com/site/
http://download.intel.com/support/edison/sb/edison_pb_331179002.pdf
http://download.intel.com/support/edison/sb/edison_pb_331179002.pdf
http://www.codeproject.com/Articles/31104/Lego-Pan-Tilt-Camera-and-Objects-Tracking
http://www.codeproject.com/Articles/31104/Lego-Pan-Tilt-Camera-and-Objects-Tracking
http://www.aforgenet.com/articles/shape_checker/
http://sourceforge.net/p/lejos/wiki/UART%20Sensor%20Protocol/
http://cache.lego.com/downloads/education/9797_LME_UserGuide_US_low.pdf
http://www.lego.com/en-us/mindstorms/downloads
http://inanimatereason.com/blog/2013/01/lego-education-evolves-stem-learning-with-the-next-generation-lego-mindstorms-education-ev3-platform/
http://inanimatereason.com/blog/2013/01/lego-education-evolves-stem-learning-with-the-next-generation-lego-mindstorms-education-ev3-platform/
http://inanimatereason.com/blog/2013/01/lego-education-evolves-stem-learning-with-the-next-generation-lego-mindstorms-education-ev3-platform/
http://www.lego.com/es-es/mindstorms/history
http://www.lego.com/en-us/mindstorms/downloads
http://www.lego.com/en-us/mindstorms/downloads
http://www.lego.com/en-us/mindstorms/products/31313-mindstorms-ev3

Referências 58

MINDSENSORS (Ed.). NXTCam v4 User Guide. [S.l.], 2014. Dispońıvel em:
〈www.mindsensors.com/index.php?module=documents&JAS DocumentManager op=
downloadFile&JAS File id=1365〉. Citado na página 20.

MINDSENSORS.COM (Ed.). Página Web Institucional, Mindsensors.com. 2005–2015.
Dispońıvel em: 〈https://www.mindsensors.com/〉. Acesso em: 25 setembro 2015. Citado
na página 16.

MORAL, J. A. B. Develop leJOS programs Step by Step. [s.n.], 2008. Dispońıvel em:
〈http://www.juanantonio.info/lejos-ebook/〉. Citado 2 vezes nas páginas 19 e 20.

MORTENSEN, T. F. The lego history: The lego group history. The LEGO Group, janeiro
2012. Dispońıvel em: 〈http://www.lego.com/en-us/aboutus/lego-group/the lego history〉.
Acesso em: 25 setembro 2015. Citado na página 15.

OPENCV (Ed.). Página Web Institucional, OpenCV.org. 2015. Dispońıvel em:
〈https://www.opencv.org/〉. Acesso em: 07 outubro 2015. Citado na página 37.

ORLANDO, J. R. AVRcam User’s Manual. [S.l.], 2004. Dispońıvel em: 〈http:
//www.jrobot.net/Download/AVRcam Users Manual v1 4.pdf〉. Acesso em: 02 março
2015. Citado na página 20.

PET Mecatrônica - Automação e Sistemas: Sobre o workshop de robótica para
alunos do 1o ano da epusp. 2015. Dispońıvel em: 〈http://sites.poli.usp.br/pmr/pet/
projetos workshoprobo.asp〉. Acesso em: 18 novembro 2015. Citado na página 13.

STEVENSON, D. E.; SCHWARZMEIER, J. D. Building an autonomous vehicle by
integrating lego mindstorms and a web cam. In: SIGCSE ’07 Proceedings of the 38th
SIGCSE technical symposium on Computer science education. [S.l.: s.n.], 2007. p. 165–169.
Citado na página 18.

TRUNG, P.; AFZULPURKAR, N.; BODHALE, D. Development of vision service in
robotics studio for road signs recognition and control of lego mindstorms robot. In:
Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on. [S.l.:
s.n.], 2009. p. 1176–1181. Citado 2 vezes nas páginas 17 e 19.

ŠULIGOJ, F. et al. Object tracking with a multiagent robot system and a stereo vision
camera. In: 24th DAAAM International Symposium on Intelligent Manufacturing and
Automation, 2013. [S.l.: s.n.], 2013. p. 968–973. Citado na página 17.

VALK, L. Robot Square: Ev3 and nxt: Differences and compatibility. 2013. Dispońıvel em:
〈http://robotsquare.com/2013/07/16/ev3-nxt-compatibility/〉. Acesso em: 02 março 2015.
Citado na página 15.

VIOLA P. ; MITSUBISHI ELECTR. RES. LABS., C. M. U. . J. M. Rapid object
detection using a boosted cascade of simple features. Computer Vision and Pattern
Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on (Volume:1), 2001. Acesso em: 21 junho 2015. Citado na página 44.

ZHENJUN, L.; NISAR, H.; MALIK, A. A framework for real time indoor robot navigation
using monte carlo localization and orb feature detection. In: Consumer Electronics (ISCE
2014), The 18th IEEE International Symposium on. [S.l.: s.n.], 2014. p. 1–2. Citado na
página 19.

www.mindsensors.com/index.php?module=documents&JAS_DocumentManager_op=downloadFile&JAS_File_id=1365
www.mindsensors.com/index.php?module=documents&JAS_DocumentManager_op=downloadFile&JAS_File_id=1365
https://www.mindsensors.com/
http://www.juanantonio.info/lejos-ebook/
http://www.lego.com/en-us/aboutus/lego-group/the_lego_history
https://www.opencv.org/
http://www.jrobot.net/Download/AVRcam_Users_Manual_v1_4.pdf
http://www.jrobot.net/Download/AVRcam_Users_Manual_v1_4.pdf
http://sites.poli.usp.br/pmr/pet/projetos_workshoprobo.asp
http://sites.poli.usp.br/pmr/pet/projetos_workshoprobo.asp
http://robotsquare.com/2013/07/16/ev3-nxt-compatibility/

Apêndices

60

APÊNDICE A – DESENHOS DE

FABRICAÇÃO ELETRÔNICA DA

PLACA DE CIRCUITO GLUE LOGIC

Tabela 2: Lista de componentes da placa de circuito Glue Logic.

Componente Valor Quantidade Descrição
IC1 7400 1 Quadriple 2-Input Positive-NAND Gates
Q1 2N3904 1 Transistor NPN
C1 470nF 1 Capacitor cerâmico
C2 330pF 1 Capacitor cerâmico
C3 10mF 1 Capacitor eletroĺıtico
R1 10KΩ 1 Resistor
R2,4 100KΩ 2 Resistor
R3 22KΩ 1 Resistor
R6 2.2KΩ 1 Resistor
R5 220Ω 1 Resistor
J1 RJ12 1 Conector fêmea RJ12 com ajuste direito
J2 - 1 Conector fêmea de 6 fios

63

APÊNDICE B – ARQUIVOS DO

BLOCO EVISION.EV3B

A seguir serão apresentados os arquivos presentes no bloco EVision.ev3b.

B.1 /EVision/

EVision é o diretório principal deste bloco. Nele constam todos os outros diretórios, além

do arquivo principal blocks.xml.

B.1.1 /EVision/blocks.xml

<?xml version="1.0" encoding="utf-8"?>

<EditorDefinitions>

<PolyGroups ModuleName="EVision" ModuleVersion="1.00">

<PolyGroup Name="EVision" BlockFamily="Sensor">

<Parameter Name="Direction" Direction="Input" DataType="UInt32"

DefaultValue="2" Configuration="Identification_WaitForChange.xml"

Identification="Identification_WaitForChange.xml" />

<Parameter Name="Port" CompilerDirectives="OneInputPort"

Direction="Input" DefaultValue="1.4" />

<Parameter Name="PositionX" DataType="Single" Direction="Output"

Identification="Identification_PositionX.png" />

<Parameter Name="AreaSize" DataType="Single" Direction="Output"

Identification="Identification_AreaSize.png" />

APÊNDICE B. Arquivos do bloco EVision.ev3b 64

<Parameter Name="Faces" DataType="Single" Direction="Output"

Identification="Identification_Faces.png" />

<Parameter Name="PositionY" DataType="Single" Direction="Output"

Identification="Identification_PositionY.png" />

<Parameter Name="Color" DataType="Single" Direction="Input"

DefaultValue="1" Identification="Identification_SetOfColors.xml"

Configuration="Identification_SetOfColors.xml" />

<Parameter Name="Shape" DataType="Single" Direction="Input"

DefaultValue="1" Identification="Identification_SetOfShapes.xml"

Configuration="Identification_SetOfShapes.xml" />

<Hardware>

<EV3PlotColor>#ff5d5d5d</EV3PlotColor>

<EV3AutoID>66</EV3AutoID>

<Direction>Input</Direction>

<DefaultPort>1.4</DefaultPort>

</Hardware>

<Block>

<Mode>MeasureColorSeeker</Mode>

<Reference Type="VILib" Name="EVColor.vix" />

<PaletteInfo Weight="0.5" />

<ParameterReference Name="Port" />

<ParameterReference Name="Color" />

<ParameterReference Name="PositionX" CompilerDirectives="Result"/>

<ParameterReference Name="AreaSize" CompilerDirectives="Result"/>

<BlockInterface>Selector</BlockInterface>

<Flags>PBROnly</Flags>

<Hardware>RudolphEV</Hardware>

<HardwareModeInfo Name="EV-COL" ID="0" Range="0,100" Unit="%" />

</Block>

<Block>

<Mode>MeasureShapeSeeker</Mode>

<Reference Type="VILib" Name="EVShape.vix" />

<ParameterReference Name="Port" />

<ParameterReference Name="Shape" />

<ParameterReference Name="PositionX" CompilerDirectives="Result"/>

<ParameterReference Name="AreaSize" CompilerDirectives="Result"/>

<BlockInterface>Selector</BlockInterface>

<Flags>PBROnly</Flags>

<Hardware>RudolphEV</Hardware>

<HardwareModeInfo Name="EV-SHP" ID="1" Range="0,100" Unit="%" />

</Block>

<Block>

APÊNDICE B. Arquivos do bloco EVision.ev3b 65

<Mode>MeasureFaceSeeker</Mode>

<Reference Type="VILib" Name="EVFace.vix" />

<ParameterReference Name="Port" />

<ParameterReference Name="Faces" CompilerDirectives="Result" />

<ParameterReference Name="AreaSize" CompilerDirectives="Result" />

<ParameterReference Name="PositionX" CompilerDirectives="Result"/>

<ParameterReference Name="PositionY" CompilerDirectives="Result"/>

<BlockInterface>Selector</BlockInterface>

<Flags>PBROnly</Flags>

<Hardware>RudolphEV</Hardware>

<HardwareModeInfo Name="EV-FACE" ID="2" Range="0,10" Unit="%" />

</Block>

</PolyGroup>

</PolyGroups>

<Hardwares>

<Hardware>

<Name>RudolphEV</Name>

<Label>EV</Label>

<Target>PBR</Target>

<Direction>Input</Direction>

<AutoID>66</AutoID>

<HardwareIcon Path="Hardware_PBR_EV.png" />

<!-- Green -->

<ColorHEX>#008000</ColorHEX>

<RangeScale>0,1000</RangeScale>

<Mode Name="EV-Col" ID="0" Unit="%" />

<Mode Name="EV-Shp" ID="1" Unit="%" />

<Mode Name="EV-Face" ID="2" Unit="%" />

</Hardware>

</Hardwares>

</EditorDefinitions>

APÊNDICE B. Arquivos do bloco EVision.ev3b 66

B.2 /EVision/VIs/

VIs é o diretório que contém os códigos .vix que controlam o bloco. Nele encontram-se

todos os códigos que são comuns tanto ao NXT quanto ao EV3, além dos diretórios NXT

e PBR os quais contém os códigos espećıficos a cada um dos blocos inteligentes. Como a

adaptção do bloco para o NXT não faz parte do escopo deste projeto, o diretório NXT se

encontra vazio. O diretório PBR, portanto, contém todos os arquivos .vix referentes ao

EV3.

B.2.1 /EVision/VIs/PBR/EVColor.vix

O arquivo EVColor.vix é o código responsável pelo modo de identificação de cores, chamado

MeasureColorSeeker. Como dito anteriormente, sua programação é realizada com o

aux́ılio de blocos de mais baixo ńıvel dispońıveis no ambiente de programação espećıfico

para a criação de novos blocos da LEGO. Os “gray blobs”são os blocos cinzas com o ponto

de interrogação vermelho.

Nesta função, o parâmetro Port referencia a porta selecionada. Seus parâmetros

são recuperados pelo bloco cinza PBrickPortConvertInput. Estes são usados como

APÊNDICE B. Arquivos do bloco EVision.ev3b 67

entrada para o bloco cinza PBrickInputReadySI8 que é o responsável pela recuperação

das informações enviadas pelo sensor. Os demais parâmetros de entrada deste bloco são: o

identificador do sensor (66); o modo ao qual as informações recuperadas pertencem (0); e

o número de informações enviadas pelo sensor, que serão recuperadas nas sáıdas do bloco

(8).

Sabe-se que, no modo de identificação de cores, o módulo de visão envia ao EV3 as

posições horizontais e o tamanho dos maiores objetos nas cores vermelha, azul e verde.

Cabe, então, ao bloco de casos (Case) a seleção da informação que estará dispońıvel

nos parâmetros de sáıda XPosition e AreaSize. A seleção é feita em função do valor

do parâmetro de entrada Color. Desta forma, o usuário é capaz de filtrar a informação

dispońıvel nas sáıdas do bloco.

B.2.2 /EVision/VIs/PBR/EVShape.vix

O arquivo EVShape.vix é o código responsável pelo modo de identificação de formas,

chamado MeasureShapeSeeker. A estrutura desta função é idêntica àquela apresentada

em EVColor.vix. Isso porque, de maneira análoga ao modo de identificação de cores, o

modo de identificação de formas é implentado de forma que o módulo de visão envia

ao EV3 as posições horizontais e o tamanho dos maiores objetos nas formas retangular,

circular e triangular.

Nota-se, porém, algumas diferenças nos seguintes parâmetros: no modo ao qual

as informações recuperadas pertencem (1) e no parâmetro Shape usado na seleção das

informações dispońıveis nos parâmetros de sáıda do bloco.

APÊNDICE B. Arquivos do bloco EVision.ev3b 68

B.2.3 /EVision/VIs/PBR/EVFace.vix

O arquivo EVFace.vix é o código responsável pelo modo de identificação de faces,

chamado MeasureFaceSeeker. Esta função um “gray blob”diferente para a recuperação

doas informações enviadas pelo sensor: o PBrickInputReadySI4. Os parâmetros de

entrada deste bloco são os mesmos: o identificador do sensor (66); o modo ao qual as

informações recuperadas pertencem (2); e o número de informações enviadas pelo sensor(4).

Nesse modo, sabe-se que o módulo de visão envia ao EV3 o número de faces detecta-

das, a posição horizontal, vertical e o tamanho da maior face detectada. Diferentemente das

outras funções, não é necessária a filtragem das informações enviadas, pois estas pertencem

aos parâmetros de sáıda Faces, XPosition, YPostion e AreSize, respectivamente.

B.3 /EVision/strings/

strings é o diretório que contém os subdiretórios en-US e pt responsáveis pela exibição

das informações dos parâmetros do bloco em inglês e em português, respectivamente. Cada

um desses subdiretórios contém um arquivo blocks.xml e um diretório images com os

arquivos Identification SetOfColors.xml e Identification SetOfShapes.xml.

B.3.1 /EVision/strings/en-US/blocks.xml

APÊNDICE B. Arquivos do bloco EVision.ev3b 69

<?xml version="1.0" encoding="utf-8"?>

<EditorStrings>

<PolyGroups ModuleName="EVision">

<PolyGroup Name="EVision" DisplayName="EVision Sensor"

DisplayNamePrefix="EVision">

<Description><![CDATA[<p>Context help for PolyGroup EVision

Sensor</p>]]></Description>

<Parameter Name="Direction" DisplayName="Direction"

Link="page.html?Path=blocks%2FLEGO%2FWait.html#Direction">

<Description><![CDATA[<p>Type: Numeric
Notes:

Direction for a Numeric sensor value to change.
Used in Sensor

Change Modes that have an Amount input.
0 = Increase
1 =

Decrease
2 = Any</p>]]></Description>

</Parameter>

<Parameter Name="Port" DisplayName="Port"

Link="page.html?Path=editor%2FPortSelector.html#Port">

<Description><![CDATA[Many programming blocks require that you select

the ports on the EV3 Brick (A, B, C, D, 1, 2, 3, and 4) that these

blocks will use. The Port Selectors are in the top right-hand corner

of these blocks.]]></Description>

</Parameter>

<Parameter Name="PositionX" DisplayName="X Position">

<Description><![CDATA[<p>Type: Numeric
Values: 0 to

100
Notes: The biggest object position on X axis. 0 means

to the left, and 100 means to the right. The X Position will be 0 if

the object is not detected at all.</p>]]></Description>

</Parameter>

<Parameter Name="AreaSize" DisplayName="Area">

<Description><![CDATA[<p>Type: Numeric
Values: 0 to

100
Notes: The biggest object proximity. 0 means far away,

and 100 means very close. The Area will be 0 if the object is not

detected at all.</p>]]></Description>

</Parameter>

<Parameter Name="Color" DisplayName="Color">

<Description><![CDATA[<p>Type: Numeric
Allowed Values:

1 - 3
Notes: The color parameter on the EVision Sensor to

detect.</p>]]></Description>

</Parameter>

<Parameter Name="Shape" DisplayName="Shape">

<Description><![CDATA[<p>Type: Numeric
Allowed Values:

1 - 3
Notes: The shape parameter on the EVision Sensor to

APÊNDICE B. Arquivos do bloco EVision.ev3b 70

detect.</p>]]></Description>

</Parameter>

<Parameter Name="Faces" DisplayName="# of faces">

<Description><![CDATA[<p>Type: Numeric
Values: 0 to

infinite
Notes: The number of faces

detected.</p>]]></Description>

</Parameter>

<Parameter Name="PositionY" DisplayName="Y Position">

<Description><![CDATA[<p>Type: Numeric
Values: 0 to

100
Notes: The object position on Y axis. 0 means up, and

100 means down. The Y Position will be 0 if the object is not

detected at all.</p>]]></Description>

</Parameter>

<Block Mode="MeasureColorSeeker" DisplayName="Color Seeker">

<Description><![CDATA[The Measure - Color mode uses the EVision Sensor

in Color mode. Set the Channel to the color that you want to detect.

The object parameters is output in PositionX and AreaSize. If the

object is not detected, PositionX will be 0, and AreaSize will be

0.]]></Description>

</Block>

<Block Mode="MeasureShapeSeeker" DisplayName="Shape Seeker">

<Description><![CDATA[The Measure - Shape mode uses the EVision Sensor

in Shape mode. Set the Channel to the shape that you want to detect.

The object parameters is output in PositionX and AreaSize. If the

object is not detected, PositionX will be 0, and AreaSize will be

0.]]></Description>

</Block>

<Block Mode="MeasureFaceSeeker" DisplayName="Face Seeker">

<Description><![CDATA[The Measure - Face mode uses the EVision Sensor in

Face mode. The face parameters is output in Faces, AreaSize,

PositionX and PositionY. If the object is not detected, Faces will be

0, PositionX and PositionY will be 0, and AreaSize will be

0.]]></Description>

</Block>

</PolyGroup>

</PolyGroups>

</EditorStrings>

B.3.2 /EVision/strings/en-US/images/Identification SetOfColors.xml

<?xml version="1.0" encoding="utf-8"?>

APÊNDICE B. Arquivos do bloco EVision.ev3b 71

<Definition>

<Entry Name="RedColor" DisplayName="Red" />

<Entry Name="BlueColor" DisplayName="Blue" />

<Entry Name="GreenColor" DisplayName="Green" />

</Definition>

B.3.3 /EVision/strings/en-US/images/Identification SetOfShapes.xml

<?xml version="1.0" encoding="utf-8"?>

<Definition>

<Entry Name="SquareShape" DisplayName="Square" />

<Entry Name="CircleShape" DisplayName="Circle" />

<Entry Name="TriangleShape" DisplayName="Triangle" />

</Definition>

B.3.4 /EVision/strings/pt/blocks.xml

<?xml version="1.0" encoding="utf-8"?>

<EditorStrings>

<PolyGroups ModuleName="EVision">

<PolyGroup Name="EVision" DisplayName="Sensor EVision"

DisplayNamePrefix="EVision">

<Description><![CDATA[<p>Context help for PolyGroup EVision

Sensor</p>]]></Description>

<Parameter Name="Direction" DisplayName="Direcao"

Link="page.html?Path=blocks%2FLEGO%2FWait.html#Direction">

<Description><![CDATA[<p>Tipo: Numerico
Observacoes:

Direcao para um valor de sensor Numerico para mudar.
Usado em

Modos de alteracao do sensor que possuem uma entrada de

Quantia.
0 = Aumentar
1 = Diminuir
2 =

Indiferente</p>]]></Description>

</Parameter>

<Parameter Name="Port" DisplayName="Porta"

Link="page.html?Path=editor%2FPortSelector.html#Port">

<Description><![CDATA[Muitos blocos de programacao exigem que voce

selecione portas no Bloco EV3 (A, B, C, D, 1, 2, 3 e 4) que estes

blocos usarao. Os seletores de porta estao no canto superior direito

destes blocos.]]></Description>

</Parameter>

<Parameter Name="PositionX" DisplayName="Posicao X">

APÊNDICE B. Arquivos do bloco EVision.ev3b 72

<Description><![CDATA[<p>Tipo: Numerico
Valores: 0 a

100
Observacoes: A posicao no eixo horizontal (X) do maior

objeto encontrado. 0 significa mais a esquerda e 100 significa mais a

direita. A Posicao X sera 0 caso nenhum objeto seja

identificado.</p>]]></Description>

</Parameter>

<Parameter Name="AreaSize" DisplayName="Area">

<Description><![CDATA[<p>Tipo: Numerico
Valores: 0 a

100
Observacoes: A proximidade do maior objeto encontrado.

0 significa mais afastado e 100 significa bem proximo. A Area sera 0

caso nenhum objeto seja identificado.</p>]]></Description>

</Parameter>

<Parameter Name="Color" DisplayName="Cor">

<Description><![CDATA[<p>Tipo: Numerico
Valores

permitidos: 1 - 3
Observacoes: Selecao da cor a ser

identificada pelo Sensor EVIsion.</p>]]></Description>

</Parameter>

<Parameter Name="Shape" DisplayName="Forma">

<Description><![CDATA[<p>Tipo: Numerico
Valores

permitidos: 1 - 3
Observacoes: Selecao da forma a ser

identificada pelo Sensor EVision.</p>]]></Description>

</Parameter>

<Parameter Name="Faces" DisplayName="# de faces">

<Description><![CDATA[<p>Tipo: Numerico
Valores: 0 a

infinito
Observacoes: O numero de faces

detectadas.</p>]]></Description>

</Parameter>

<Parameter Name="PositionY" DisplayName="Posicao Y">

<Description><![CDATA[<p>Tipo: Numerico
Valores: 0 a

100
Observacoes: A posicao no eixo vertical (Y) do maior

objeto encontrado. 0 significa mais acima e 100 significa mais

abaixo. A Posicao Y sera 0 caso nenhum objeto seja

identificado.</p>]]></Description>

</Parameter>

<Block Mode="MeasureColorSeeker" DisplayName="Identificacao de Cores">

<Description><![CDATA[O modo Medida - Identificacao de Cores usa o

Sensor EVision no modo de cor. Defina o parametro Cor na cor que voce

deseja identificar. Os parametros do objeto sao extraidos em Posicao

X e Area. Se nenhum objeto e identificado, Posicao X sera 0 e Area

sera 0.]]></Description>

</Block>

<Block Mode="MeasureShapeSeeker" DisplayName="Identificacao de Formas">

APÊNDICE B. Arquivos do bloco EVision.ev3b 73

<Description><![CDATA[O modo Medida - Identificacao de Formas usa o

Sensor EVision no modo de forma. Defina o parametro Forma na form que

voce deseja identificar. Os parametros do objeto sao extraidos em

Posicao X e Area. Se nenhum objeto e identificado, Posicao X sera 0 e

Area sera 0.]]></Description>

</Block>

<Block Mode="MeasureFaceSeeker" DisplayName="Identificacao de Faces">

<Description><![CDATA[O modo Medida - Identificacao de Faces usa o

Sensor EVision no modo de faces. Os parametros da face sao extraidos

em Faces, Area, Posicao X e Posicao Y. Se nenhum objeto e

identificado, Faces sera 0, Posicao X e Posicao Y serao 0, e Area

sera 0.]]></Description>

</Block>

</PolyGroup>

</PolyGroups>

</EditorStrings>

B.3.5 /EVision/strings/pt/images/Identification SetOfColors.xml

<?xml version="1.0" encoding="utf-8"?>

<Definition>

<Entry Name="RedColor" DisplayName="Vermelho" />

<Entry Name="BlueColor" DisplayName="Azul" />

<Entry Name="GreenColor" DisplayName="Verde" />

</Definition>

B.3.6 /EVision/strings/pt/images/Identification SetOfShapes.xml

<?xml version="1.0" encoding="utf-8"?>

<Definition>

<Entry Name="SquareShape" DisplayName="Retangulo" />

<Entry Name="CircleShape" DisplayName="Circulo" />

<Entry Name="TriangleShape" DisplayName="Triangulo" />

</Definition>

APÊNDICE B. Arquivos do bloco EVision.ev3b 74

B.4 /EVision/images/

images é o diretório que contém todas as imagens referentes ao bloco. Cada

imagens possui um tamanho e um nome espećıficos a serem seguidos, de tal forma que:

• a imagem da palheta deve ter 20x20 pixeus e seu nome deve ser PolyGroup <PolyGroup-

Name> Palette.png;

• a imagem do diagrama deve ter 34x34 e seu nome deve ser PolyGroup <PolyGroup-

Name> Diagram.png;

• as imagens dos modos devem ter 38x22 e seu nome deve ser PolyGroup <PolyGroup-

Name> Mode <PolyGroup-Name> Diagram.png;

• as imagens de hardware devem ter 38x22 e 22x22 e seus nomes devem ser Poly-

Group <PolyGroup-Name> Category.png e PolyGroup <PolyGroup-Name >

Mode <PolyGroup-Name> Hardware.png para o bloco e os modos, respectiva-

mente;

• as imagens de identificação dos parâmetros do bloco devem ter 22x22 e seu nome

deve ser Identification <ParameterName>.png.

APÊNDICE B. Arquivos do bloco EVision.ev3b 75

Além das imagens, os arquivos .xml de identificação de parâmetros também devem

estar neste diretório. Assim, no módulo de visão, imagens também possui os arquivos

Identification SetOfColors.xml e Identification SetOfShapes.xml.

B.4.1 /EVision/images/Identification SetOfColors.xml

<?xml version="1.0" encoding="utf-8"?>

<Definition Type="Integer">

<Point Value="1" Name="RedColor" ImageSuffix="_1" />

<Point Value="2" Name="BlueColor" ImageSuffix="_2" />

<Point Value="3" Name="GreenColor" ImageSuffix="_3" />

</Definition>

B.4.2 /EVision/images/Identification SetOfShapes.xml

<?xml version="1.0" encoding="utf-8"?>

<Definition Type="Integer">

<Point Value="1" Name="SquareShape" ImageSuffix="_1" />

<Point Value="2" Name="CircleShape" ImageSuffix="_2" />

<Point Value="3" Name="TriangleShape" ImageSuffix="_3" />

</Definition>

B.5 /EVision/help/

help é o diretório que contém os subdiretórios en-US e pt responsáveis pelo

material de apoio à utilização do bloco em inglês e português, respectivamente. Cada um

desses subdiretórios contém um arquivo EVisionSensor.html e as imagens utilizadas por

pelo mesmo:

APÊNDICE B. Arquivos do bloco EVision.ev3b 76

B.5.1 /EVision/help/en-US/EVisionSensor.html

<html>

<head>

<title>EVision Sensor Block</title>

</head>

<body BGCOLOR="FFFFFF">

<h1>EVision Sensor Block</h1>

<p>This block is the result of the final paper of the Mechatronics Engineer

undergraduate course at Escola Politécnica da Universidade de

São Paulo, written by Amanda Fernandes and Renan Marchetto and

supervised by Prof. Dr. Thiago Martins.</p>

<p> At runtime, the EVision Sensor provides specific parameters of the

selected image treatment.

 The sensor takes about 30 seconds to

initialize.

<h2>Modes</h2>

<h3>Color Seeker</h3>

<p>

This mode implements a filter for red, blue and green objects.

It has a color selector as an input and horizontal position and size of the

biggest object in the selected color detected as outputs.

</p>

<h3>Shape Seeker</h3>

<p>

This mode implements a filter for rectangular, circular and triangular shaped

objects.

APÊNDICE B. Arquivos do bloco EVision.ev3b 77

It has a shape selector as an input and horizontal position and size of the

biggest object in the selected shape detected as outputs.

</p>

<h3>Face Seeker</h3>

<p>

This mode implements a filter for face detection.

It’s outputs are: number of faces detected, horizontal and vertical position

and size of the biggest face detected.

</p>

<h2>Parameters</h2>

<h3>Direction, Port, PositionX, AreaSize, Faces, PositionY, Color, Shape</h3>

<p>

All parameters, with exception of "Faces", are given as a percentage of the

camera resolution (640x480).

</p>

<p>

PositionX, PositionY, AreaSize and Faces are the

object parameter returned by the sensor.

Color and Shape are the selection parameters for the sensor

functions.

Direction and Port are standard parameters for a "Measure" block.

</p>

</body>

</html>

B.5.2 /EVision/help/pt/EVisionSensor.html

<html>

<head>

<title>Bloco do Sensor EVision</title>

</head>

<body BGCOLOR="FFFFFF">

<h1>Bloco do Sensor EVision</h1>

<p>Este bloco é o resultado do trabalho de conclusão de curso de

Engenharia Mecatrônica na Escola Politécnica da Universidade

APÊNDICE B. Arquivos do bloco EVision.ev3b 78

de São Paulo, escrito por Amanda Fernandes e Renan Marchetto e

orientado pelo Prof. Dr. Thiago Martins.</p>

<p> Durante o seu funcionamento, o Sensor EVision fornece parâmetros

específicos do tratamento de imagens selecionado.

 O sensor leva aproximadamente 30s

para inicializar.

<h2>Modos</h2>

<h3>Identificação de Cores</h3>

<p>

Este modo implementa um filtro para identificação de objetos nas

cores vermelha, azul e verde.

Ele possui um seletor de cor como parâmetro de entrada e a

posição horizontal e o tamanho do maior objeto identificado

na cor selecionada como parâmetros de saída.

</p>

<h3>Identificação de Formas</h3>

<p>

Este modo implement um filtro para identificação de objetos nas

formas retangular, circular e triangular.

Ele possui um seletor de formas como parâmetro de entrada e a

posição horizontal e o tamanho do maior objeto identificado

na forma selecionada como parâmetros de saída.

</p>

<h3>Identificação de Faces</h3>

<p>

Este modo implementa um filtro para identificação de faces.

Seus parâmetros de saída são: o número de faces

identificadas, as posições horizontal e vertical, o tamanho

da maior face identificada.

APÊNDICE B. Arquivos do bloco EVision.ev3b 79

</p>

<h2>Parâmetros</h2>

<h3>Direção, Porta, Posição X, Área, Faces,

Posição Y, Cor, Forma</h3>

<p>

Todos os parâmetros, exceto "Faces", são dados como uma

porcentagem da resolução da câmera (460x480).

</p>

<p>

Posição X, Posição Y,

Área e Faces são os parâmetros do objeto

retornado pelo sensor.

Cor e Forma são os parâmetros de

seleção das funções do sensor.

Direção e Porta são os parâmetros

padrão para o bloco "Medidas".

</p>

</body>

</html>

80

APÊNDICE C – DESENHOS DE

FABRICAÇÃO DO INVOLUCRO

SHEET 1 OF 1

DRAWN

CHECKED

QA

MFG

APPROVED

Amanda/Renan 19/11/2015

DWG NO

Assembly1-1

TITLE

Involucro Sensor

SIZE

A4
SCALE

REV

1 / 2

PARTS LIST

DESCRIPTIONPART NUMBERQTYITEM

Material : ABSBack11

Material : ABSFront12

Material : ABSTop13

2

1

3

82

APÊNDICE D – PROGRAMAÇÃO

(PYTHON)

D.0.3 protocol.py

import mraa

import checksum as cs

import time

import serial

import color_tracking as col

import shape_tracking as shp

import face_tracking as face

import cv2

import sys

from multiprocessing import Process, Queue

def uartData (q,t,v):

msg = ’D808070605040302012F’

modo = 0

v.timeout = 1

while True:

if not q.empty():

msg = q.get()

v.write(bytearray.fromhex(msg))

info= v.read()

if info:

if (info.encode("hex")==’43’):

info = v.read()

if (info.encode("hex")==’01’) :

modo = 1

t.put(modo)

elif (info.encode("hex")==’02’) :

APÊNDICE D. Programação (Python) 83

modo = 2

t.put(modo)

def calculo (q,t):

capture = cv2.VideoCapture(-1)

faceCascade =

cv2.CascadeClassifier(’evision/haarcascade_frontalface_default.xml’)

modo = 0

while True:

if not t.empty():

modo = t.get()

if modo == 0:

#Color Tracker

res = col.ColourTrack(capture)

msg = cs.cksum(res,modo)

elif modo == 1:

#Form Tracker’

res = shp.ShapeTracker(capture)

msg = cs.cksum(res,modo)

elif modo == 2:

#Face Tracker

res = face.FaceTracker(capture,faceCascade)

msg = cs.cksum(res,modo)

q.put(msg)

time.sleep(0.05)

def sendprotocol():

i = 0

while i <= 8:

#Turn TX pin into GPIO port

x=mraa.Gpio(35)

x.dir(mraa.DIR_OUT)

#Keep TX > 500 ms as LOW

x.mode(2)

time.sleep(0.505)

x.mode(0)

#Initialize UART pins

APÊNDICE D. Programação (Python) 84

#ATTENTION: timeout may change as the protocol changes

x = mraa.Uart(0)

u = serial.Serial(’/dev/ttyMFD1’,2400, timeout = 1.4)

#Clean RX and TX

u.flushInput()

u.flushOutput()

#Start protocol

print "START PROTOCOL"

msg = bytearray.fromhex(’4042FD’)

u.write(msg)

msg = bytearray.fromhex(’490202B6’)

u.write(msg)

msg = bytearray.fromhex(’5200E100004C’)

u.write(msg)

msg = bytearray.fromhex(’A20045562D4641434500000000000000000062’)

u.write(msg)

msg = bytearray.fromhex(’9A01000000000000C842EE’)

u.write(msg)

msg = bytearray.fromhex(’9A03000000000000C842EC’)

u.write(msg)

msg = bytearray.fromhex(’9A04706374000000000006’)

u.write(msg)

msg = bytearray.fromhex(’928004000300EA’)

u.write(msg)

msg = bytearray.fromhex(’990045562D534850000013’)

u.write(msg)

msg = bytearray.fromhex(’9901000000000000C842ED’)

u.write(msg)

msg = bytearray.fromhex(’9903000000000000C842EF’)

u.write(msg)

msg = bytearray.fromhex(’9904706374000000000005’)

u.write(msg)

msg = bytearray.fromhex(’918008000300E5’)

u.write(msg)

msg = bytearray.fromhex(’980045562D434F4C000019’)

u.write(msg)

msg = bytearray.fromhex(’9801000000000000C842EC’)

u.write(msg)

msg = bytearray.fromhex(’9803000000000000C842EE’)

u.write(msg)

APÊNDICE D. Programação (Python) 85

msg = bytearray.fromhex(’9804706374000000000004’)

u.write(msg)

msg = bytearray.fromhex(’908008000300E4’)

u.write(msg)

msg = bytearray.fromhex(’04’) #ACK

u.write(msg)

print "END PROTOCOL"

#Wait for the first byte from EV3

info=u.read()

print info.encode("hex")

#Test if ACK

i = i + 1

if info:

if (info.encode("hex")==’04’):

print "ACK 04"

break

#Redefine baudrate

time.sleep(0.1)

u.baudrate=57600

q = Queue()

t = Queue()

p = Process(target=uartData, args=(q,t,u,))

k = Process(target=calculo, args=(q,t,))

p.start()

k.start()

D.0.4 colortracking.py

import cv2, math

import numpy as np

def ColourTrack(capture):

scale_down = 1

APÊNDICE D. Programação (Python) 86

f, orig_img = capture.read()

orig_img = cv2.flip(orig_img,1)

img = cv2.GaussianBlur(orig_img, (5,5), 0)

img = cv2.cvtColor(orig_img,cv2.COLOR_BGR2HSV)

img = cv2.resize(img, (len(orig_img[0])/ scale_down, len(orig_img)/

scale_down))

red_lower = np.array([0, 150, 0],np.uint8)

red_upper = np.array([5, 255, 255], np.uint8)

red_binary = cv2.inRange(img, red_lower, red_upper)

blue_lower = np.array([100, 100, 100],np.uint8)

blue_upper = np.array([130, 255, 255], np.uint8)

blue_binary = cv2.inRange(img, blue_lower, blue_upper)

green_lower = np.array([40, 100, 100],np.uint8)

green_upper = np.array([80, 255, 255], np.uint8)

green_binary = cv2.inRange(img, green_lower, green_upper)

dilation = np.ones((15,15),"uint8")

red_binary = cv2.dilate(red_binary, dilation)

blue_binary = cv2.dilate(blue_binary, dilation)

green_binary = cv2.dilate(green_binary, dilation)

contoursr, hierarchyr = cv2.findContours(red_binary, cv2.RETR_LIST,

cv2.CHAIN_APPROX_SIMPLE)

contoursb, hierarchyb = cv2.findContours(blue_binary, cv2.RETR_LIST,

cv2.CHAIN_APPROX_SIMPLE)

contoursg, hierarchyg = cv2.findContours(green_binary, cv2.RETR_LIST,

cv2.CHAIN_APPROX_SIMPLE)

max_area_r = 0

max_area_b = 0

max_area_g = 0

largest_contour_r = None

largest_contour_b = None

largest_contour_g = None

cx_r=0

cx_b=0

cx_g=0

APÊNDICE D. Programação (Python) 87

for idx, contour in enumerate(contoursr):

area = cv2.contourArea(contour)

if area>max_area_r:

max_area_r = area

largest_contour_r = contour

for idx, contour in enumerate(contoursb):

area = cv2.contourArea(contour)

if area>max_area_b:

max_area_b = area

largest_contour_b = contour

for idx, contour in enumerate(contoursg):

area = cv2.contourArea(contour)

if area>max_area_g:

max_area_g = area

largest_contour_g = contour

if not largest_contour_r == None:

moment_r = cv2.moments(largest_contour_r)

if moment_r["m00"]>1000/scale_down:

cx_r=np.int0(moment_r["m10"]/moment_r["m00"])

if not largest_contour_b == None:

moment_b = cv2.moments(largest_contour_b)

if moment_b["m00"]>1000/scale_down:

cx_b=np.int0(moment_b["m10"]/moment_b["m00"])

if not largest_contour_g == None:

moment_g = cv2.moments(largest_contour_g)

if moment_g["m00"]>1000/scale_down:

cx_g=np.int0(moment_g["m10"]/moment_g["m00"])

res=np.int_([cx_r*100/capture.get(3),

max_area_r*100/(capture.get(3)*capture.get(4)),cx_b*100/capture.get(3),

max_area_b*100/(capture.get(3)*capture.get(4)),cx_g*100/capture.get(3),

max_area_g*100/(capture.get(3)*capture.get(4)), 0 , 0])

return res

D.0.5 shapetracking.py

APÊNDICE D. Programação (Python) 88

import cv2, math

import numpy as np

def ShapeTracker(capture):

scale_down = 1

f, orig_img = capture.read()

orig_img = cv2.flip(orig_img,1)

cimg = cv2.GaussianBlur(orig_img, (5,5), 0)

cimg = cv2.cvtColor(cimg,cv2.COLOR_BGR2GRAY)

cimg = cv2.resize(cimg, (len(orig_img[0])/ scale_down, len(orig_img)/

scale_down))

cimg = cv2.Canny(cimg,50,190)

contours,h = cv2.findContours(cimg,cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

contours_s=[]

contours_c=[]

contours_t=[]

for cnt in contours:

approx = cv2.approxPolyDP(cnt,0.01*cv2.arcLength(cnt,True),True)

if len(approx)==3:

contours_t=contours_t+[cnt]

elif len(approx)==4:

contours_s=contours_s+[cnt]

if len(approx) > 15:

contours_c=contours_c+[cnt]

max_area_s=0

max_area_c=0

max_area_t=0

largest_contour_s=None

largest_contour_c=None

largest_contour_t=None

cx_s=0

cx_c=0

cx_t=0

for idx, contour in enumerate(contours_s):

area = cv2.contourArea(contour)

APÊNDICE D. Programação (Python) 89

if area>max_area_s:

max_area_s = area

largest_contour_s = contour

for idx, contour in enumerate(contours_c):

area = cv2.contourArea(contour)

if area>max_area_c:

max_area_c = area

largest_contour_c = contour

for idx, contour in enumerate(contours_t):

area = cv2.contourArea(contour)

if area>max_area_t:

max_area_t = area

largest_contour_t = contour

if not largest_contour_s == None:

moment_s = cv2.moments(largest_contour_s)

if moment_s["m00"]>1000/scale_down:

cx_s=np.int0(moment_s["m10"]/moment_s["m00"])

if not largest_contour_c == None:

moment_c = cv2.moments(largest_contour_c)

if moment_c["m00"]>1000/scale_down:

cx_c=np.int0(moment_c["m10"]/moment_c["m00"])

if not largest_contour_t == None:

moment_t = cv2.moments(largest_contour_t)

if moment_t["m00"]>1000/scale_down:

cx_t=np.int0(moment_t["m10"]/moment_t["m00"])

res=np.int_([cx_s*100/capture.get(3),

max_area_s*100/(capture.get(3)*capture.get(4)),cx_c*100/capture.get(3),max_area_c*100/(capture.get(3)*capture.get(4)),cx_t*100/capture.get(3),

max_area_t*100/(capture.get(3)*capture.get(4)),0,0])

return res

D.0.6 facetracking.py

import cv2

import numpy as np

APÊNDICE D. Programação (Python) 90

import sys

def FaceTracker(capture, faceCascade):

Capture frame-by-frame

ret, image = capture.read()

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(

gray,

scaleFactor=1.1,

minNeighbors=5,

minSize=(30, 30),

flags=cv2.cv.CV_HAAR_SCALE_IMAGE)

max_area=0

largest_x =0

largest_y =0

Rectangle around the faces

for (x, y, w, h) in faces:

area = w*h

if area>max_area:

max_area = area

largest_x = x + w/2

largest_y = y + h/2

res=np.int_([len(faces),max_area*100/(capture.get(3)*capture.get(4)),largest_x*100/capture.get(3),largest_y*100/capture.get(4)])

return res

Anexos

92

ANEXO A – DESCRIÇÃO DAS

MENSAGENS ENVIADAS E

RECEBIDAS PELO LEGO

MINDSTORMS EV3

Tabela 3: Descrição dos bits mais significativos do byte de mensagem. Reproduzido de
(KOHLER, 2015).

XX Descrição
00 Mensagem de sistema (tipo 1)
01 Mensagem de comando (tipo 2)
10 Mensagem de informação (tipo 3)
11 Mensagem de dados (tipo 4)

Tabela 4: Descrição das mensagens de sistema. Reproduzido de (KOHLER, 2015).

Byte Descrição
0b00000000 SYNC
0b00000010 NACK
0b00000100 ACK
0b00LLL110 ESC

Tabela 5: Descrição das mensagens de comando. Reproduzido de (KOHLER, 2015).

Byte Payload Descrição

0b01000000 T
TIPO: tipo do sensor
T é o tipo do sensor (número entre 0 e 255)

0b01001001 M,V
MODOS: modos do sensor
M+1 e o número de modos suportados (entre 1 e 8)
V+1 é o número de modos a serem mostrados (entre 1 e M)

0b01010010 SSSS
VELOCIDADE: máxima taxa de transmissão
SSSS é a máxima taxa de transmissão suportada pelo sensor

0b01000011 M
SELEÇÃO: muda o modo do sensor
M especifica o modo do sensor desejado

0b01LLL100 <dados>
ESCRITA: envio de dados para o sensor
<dados> consiste de 20bLLL bytes

ANEXO A. Descrição das mensagens enviadas e recebidas pelo LEGO MINDSTORMS EV3 93

Tabela 6: Descrição das mensagens de informação. Reproduzido de (KOHLER, 2015).

Mensagem Info Payload Descrição

0b10LLLMMM 0 <string>
NOME: nome do modo 0bMMM
<string> é uma string ASCII de tamanho 20bLLL

0b10011MMM 1
VALBRUTO: gama de leituras brutas do sensor

LLLL LLLL é o menor valor bruto
HHHH HHHH é o maior valor bruto

0b10011MMM 2
PCT: gama de leituras em porcentagem

LLLL LLLL é o valor % correspondente ao menor valor bruto
HHHH HHHH é o valor % correspondente ao maior valor bruto

0b10011MMM 3
SI: gama de leituras no SI

LLLL LLLL é o valor SI correspondente ao menor valor bruto
HHHH HHHH é o valor SI correspondente ao maior valor bruto

0b10LLLMMM 4 <string>
SIMBOLO: nome da unidade no SI
<string> é uma string ASCII de tamanho 20bLLL

0b10010MMM 0x80 S,T,F,D

FORMATO: formato dos dados do sensor no modo
0bMMM
S: número de itens (no mı́nimo 1)
T: tipo de dado dos itens (8, 16 ou 32)
F: número de d́ıgitos a mostrar (0-15)
D: número de decimais a mostrar (0-15)

Tabela 7: Descrição das mensagens de dados. Reproduzido de (KOHLER, 2015).

Mensagem Payload Descrição

0b11LLLMMM <dados>
DADOS: dados do sensor
<dados> contêm as leituras brutas do sensor no modo
0bMMM de tamanho 20bLLL

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Sumário
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Introdução
	Tema
	Justificativa da Escolha do Tema
	Estrutura do Trabalho

	Estado da Arte
	LEGO MINDSTORMS
	Visão Computacional na Robótica
	Visão Computacional e o kit da LEGO MINDSTORMS

	Requisitos do projeto
	Requisitos funcionais
	Requisitos não funcionais
	Requisitos do produto
	Requisitos organizacionais

	Análise e Design
	Arquitetura
	LEGO MINDSTORMS EV3
	Modulo de Visão
	Microcomputador
	Câmera
	Cabeamento
	Invólucro

	Metodologia
	Bloco EV3
	Protocolo de comunicação
	Programação do microcomputador
	Estrutura do Programa
	Execução no Boot (Edison)

	Glue Logic

	Resultados
	Conclusão
	Sugestões para trabalhos futuros

	Referências
	Apêndices
	Desenhos de fabricação eletrônica da placa de circuito Glue Logic
	Arquivos do bloco EVision.ev3b
	/EVision/
	/EVision/blocks.xml

	/EVision/VIs/
	/EVision/VIs/PBR/EVColor.vix
	/EVision/VIs/PBR/EVShape.vix
	/EVision/VIs/PBR/EVFace.vix

	/EVision/strings/
	/EVision/strings/en-US/blocks.xml
	/EVision/strings/en-US/images/Identification_SetOfColors.xml
	/EVision/strings/en-US/images/Identification_SetOfShapes.xml
	/EVision/strings/pt/blocks.xml
	/EVision/strings/pt/images/Identification_SetOfColors.xml
	/EVision/strings/pt/images/Identification_SetOfShapes.xml

	/EVision/images/
	/EVision/images/Identification_SetOfColors.xml
	/EVision/images/Identification_SetOfShapes.xml

	/EVision/help/
	/EVision/help/en-US/EVisionSensor.html
	/EVision/help/pt/EVisionSensor.html

	Desenhos de fabricação do involucro
	Programação (Python)
	protocol.py
	colortracking.py
	shapetracking.py
	facetracking.py

	Anexos
	Descrição das mensagens enviadas e recebidas pelo LEGO MINDSTORMS EV3

